How a gap junction maintains its structure

In gap junctions, identical membrane proteins are linked up in pairs (dyads) that bridge the extracellular space between two apposed cell membranes 1,2 . Typically, several thousand of these dyads are aggregated in the plane of the membranes and form a junctional plaque with a distinct boundary. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 1984-07, Vol.310 (5975), p.316-318
Hauptverfasser: Braun, Jochen, Abney, James R, Owicki, John C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In gap junctions, identical membrane proteins are linked up in pairs (dyads) that bridge the extracellular space between two apposed cell membranes 1,2 . Typically, several thousand of these dyads are aggregated in the plane of the membranes and form a junctional plaque with a distinct boundary. The question thus arises as to what maintains the dyads in an aggregated state. From a statistical mechanical analysis of the positions of dyads in a freeze-fracture electron micrograph, we report here that the aggregates are not maintained by an attractive force between pairs of dyads, but probably by the minimization of the repulsive force between apposed membranes. On the basis of this analysis we present a model for the structure of mature gap junctions as well as certain aspects of the formation and disassembly of gap junctions.
ISSN:0028-0836
1476-4687
DOI:10.1038/310316a0