Immunity to transplantable nitrosourea-induced neurogenic tumors. III: Systemic adoptive transfer of immunity

The effect of intravenously injected tumor immune spleen cells on growth of 3 X 10(5) gliosarcoma T9 cells injected intradermally (ID) or intracerebrally (IC) into sublethally irradiated CDF rats was evaluated. Spleen cells from donor rats with sufficient immunity to reject 5 X 10(5) T9 cells inhibi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Neuropathol. Exp. Neurol.; (United States) 1984-07, Vol.43 (4), p.426-438
Hauptverfasser: SHIBUYA, N, HOCHGESCHWENDER, U, KIDA, Y, HOCHWALD, G. M, THORBECKE, G. J, CRAVIOTO, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of intravenously injected tumor immune spleen cells on growth of 3 X 10(5) gliosarcoma T9 cells injected intradermally (ID) or intracerebrally (IC) into sublethally irradiated CDF rats was evaluated. Spleen cells from donor rats with sufficient immunity to reject 5 X 10(5) T9 cells inhibited the growth of T9 cells mixed with spleen cells in a ratio of 1:25 and injected ID, but could not act after intravenous transfer. However, donor rats which had rejected increasing T9 challenge doses up to 1 X 10(7) cells produced immune spleen cells which, upon IV transfer, could inhibit growth of ID T9 challenge but not of EB-679, an unrelated glioma, in recipient rats. Rejection of IC T9 challenge was also obtained after IV transfer, in recipients of such "hyperimmune" spleen cells, but was less (60% maximum) than that noted after ID T9 challenge (100% maximum). The removal of B cells from the transferred spleen cells did not affect the results, suggesting that the specific immunity was mediated by T cells. We conclude that the special immunological circumstances of tumors growing in the brain renders them less accessible to rejection by systemically transferred immune cells, but it is nevertheless possible to effect a significant incidence of rejection of syngeneic tumor growth in the brain by the intravenous transfer of hyperimmune spleen cells.
ISSN:0022-3069
1554-6578
DOI:10.1097/00005072-198407000-00007