Study of human muscle contraction using electrically evoked twitch responses during passive shortening and lengthening movements

Electrically evoked twitch properties of the human plantarflexor muscles were measured with the muscles at a constant length (static) and during passive shortening and lengthening. A Kin-Com dynamometer system was used to passively move the ankle joint at 0.52 rad s-1 (30 degrees s-1), as well as to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European Journal of Applied Physiology and Occupational Physiology 1987-09, Vol.56 (6), p.623-627
Hauptverfasser: GRAVEL, D, BELANGER, A. Y, RICHARDS, C. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrically evoked twitch properties of the human plantarflexor muscles were measured with the muscles at a constant length (static) and during passive shortening and lengthening. A Kin-Com dynamometer system was used to passively move the ankle joint at 0.52 rad s-1 (30 degrees s-1), as well as to record the twitch responses which were elicited by supramaximal electric shocks applied over the tibial nerve in the popliteal fossa. In the lengthening and shortening conditions, twitches were evoked by triggering the shocks so that the twitch response occurred at a similar angular position for all three conditions. The lengthening twitch peak torque was about twice as large as that recorded for the shortening condition. There was, however, no statistical difference in the twitch time course in these three testing conditions. This twofold increase in the peak twitch torque during lengthening, compared to shortening, is much greater than the torque increase reported during eccentric, as compared to concentric maximal voluntary contractions. These findings suggest that a deactivation process of the contractile system occurs during muscle shortening, while in contrast, during passive lengthening a potentiation mechanism is acting, and that both these mechanisms are independent of volitional muscle activation. The present study is the first to demonstrate the possibility of electrically evoked contractions of human muscles during passive lengthening and shortening. We believe that the use of such evoked contractions may be promising for the study of contractile behaviour of human skeletal muscles during eccentric and concentric conditions.
ISSN:0301-5548
1439-6319
1432-1025
1439-6327
DOI:10.1007/bf00424800