Spermine-Enhanced Protein Phosphorylation in Human Placenta
Abstract Polyamines are known to have a role in cell proliferation, differentiation, and protein synthesis. During pregnancy, major changes in polyamine levels occur in maternal serum, amniotic fluid, and placental tissue. Polyamine-activated phosphorylation has recently been proposed as a mechanism...
Gespeichert in:
Veröffentlicht in: | Experimental biology and medicine (Maywood, N.J.) N.J.), 1984-07, Vol.176 (3), p.313-321 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Polyamines are known to have a role in cell proliferation, differentiation, and protein synthesis. During pregnancy, major changes in polyamine levels occur in maternal serum, amniotic fluid, and placental tissue. Polyamine-activated phosphorylation has recently been proposed as a mechanism by which polyamines may regulate metabolic processes in target tissues. Polyamine-activated protein phosphorylation has not been studied in placenta. Homogenate membrane and cytosol fractions from human placenta were subjected to an endogenous protein phosphorylation assay using [γ-32P]ATP in the presence and absence of the polyamines, spermine and spermidine, and the diamine, putrescine. Protein phosphorylation was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. When compared to basal levels, spermine (10-3
M) significantly (P < 0.001) stimulated 32P incorporation into phosphoproteins having molecular weights of 55,000 and 105,000. At this concentration spermidine and putrescine failed to stimulate phosphorylation. Half-maximal 32P incorporation was observed with 3.7 ± 1.25 × 10-4
M spermine. Polylysine enhanced the phosphorylation of phosphoproteins of the same molecular weight as those enhanced by spermine. Heparin and high Mg2+ inhibited spermine-induced phosphorylation. cAMP and Ca2+ did not stimulate phosphorylation of the spermine-dependent phosphoproteins. Spermine, however, acted as an antagonist for cAMP-dependent phosphorylation of a M
r 45,000 phosphoprotein. |
---|---|
ISSN: | 0037-9727 1535-3702 1535-3699 1525-1373 |
DOI: | 10.3181/00379727-176-41877 |