Identification of the V factor needed for synthesis of the iron-molybdenum cofactor of nitrogenase as homocitrate
Nitrogenase catalyses the ATP-dependent reduction of N2 to NH3, and is composed of two proteins, dinitrogenase (MoFe protein or component I) and dinitrogenase reductase (Fe protein or component II). Dinitrogenase contains a unique prosthetic group (iron-molybdenum cofactor, FeMoco) comprised of Fe,...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1987-10, Vol.329 (6142), p.855-857 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nitrogenase catalyses the ATP-dependent reduction of N2 to NH3, and is composed of two proteins, dinitrogenase (MoFe protein or component I) and dinitrogenase reductase (Fe protein or component II). Dinitrogenase contains a unique prosthetic group (iron-molybdenum cofactor, FeMoco) comprised of Fe, Mo and S, which has been proposed as the site of N2 reduction. Biochemical and genetic studies of Nif- (nitrogen fixation) mutants of Klebsiella pneumoniae which are defective in nitrogen fixation, have shown that the nifB, nifQ, nifN, nifE and nifV genes are required for the biosynthesis of FeMo-co. Recently, a system for in vitro synthesis of FeMoco was described. The assay requires at least the nifB, nifN and nifE gene products, and a low-molecular-weight factor (V factor) produced in the presence of the nifV gene product. We have used this system to study FeMoco biosynthesis. We report here the isolation of V factor and identify it as homocitric acid ([R]2-hydroxy-1,2,4-butanetricarboxylic acid). |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/329855a0 |