A non-cholinergic function for acetylcholinesterase in the substantia nigra: behavioural evidence

Acetylcholinesterase is released from substantia nigra neurons, independently of cholinergic transmission. In an attempt to discover the functional significance of this phenomenon, the behavioural effects of injecting acetylcholinesterase into one substantia nigra of the rat were investigated. Follo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental brain research 1984-01, Vol.54 (3), p.513-520
Hauptverfasser: Greenfield, S A, Chubb, I W, Grünewald, R A, Henderson, Z, May, J, Portnoy, S, Weston, J, Wright, M C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acetylcholinesterase is released from substantia nigra neurons, independently of cholinergic transmission. In an attempt to discover the functional significance of this phenomenon, the behavioural effects of injecting acetylcholinesterase into one substantia nigra of the rat were investigated. Following a single injection of the enzyme, intraperitoneal amphetamine evoked circling behaviour in a direction away from the side of injection. Purified acetylcholinesterase with a similar electrophoretic mobility to the endogenous secreted form, was far more potent in eliciting circling than much higher activities of commercial enzyme, consisting of several molecular species of acetylcholinesterase. Similar infusions of butyrylcholinesterase did not induce circling. Depending upon the amount of enzyme initially given, the behavioural effects of a single injection of acetylcholinesterase persisted for up to thirty days. During this period apomorphine, administered systemically, induced transient circling towards the acetylcholinesterase-treated side. It is concluded that secreted acetylcholinesterase has a functional significance within the substantia nigra, independent of cholinergic transmission. This released enzyme could exert long-term changes in the activity of the nigrostriatal system, involving modification of dopamine striatal receptors.
ISSN:0014-4819
1432-1106
DOI:10.1007/BF00235476