Light-induced dephosphorylation of a 33K protein in rod outer segments of rat retina
Phosphorylated proteins may play an important role in regulating the metabolism or function of rod photoreceptors. In mammalian retinas, a photoreceptor protein of 33 000 (33K) molecular weight is phosphorylated in a cyclic nucleotide dependent manner in vitro. Since light initiates the activation o...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 1984-04, Vol.23 (9), p.1972-1977 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phosphorylated proteins may play an important role in regulating the metabolism or function of rod photoreceptors. In mammalian retinas, a photoreceptor protein of 33 000 (33K) molecular weight is phosphorylated in a cyclic nucleotide dependent manner in vitro. Since light initiates the activation of a photoreceptor-specific phosphodiesterase and a rapid reduction in guanosine cyclic 3',5'-phosphate concentration, phosphorylation of the 33K protein may be modulated by light in situ. In order to test this possibility, dark-adapted rat retinas were incubated for 30 min in the dark in phosphate-free Kreb's buffer containing [32P]orthophosphate. Following incubation, rod outer segments were detached by shaking, and the 32P-labeled rod outer segment proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, detected by autoradiography, and quantitated by densitometric scanning. The incorporation of radioactivity (32P) into the 33K protein was higher than into any other rod outer segment protein, and the amount of 32P-labeled 33K protein in the detached rod outer segments remained unchanged during 10 additional min of darkness. The addition of isobutylmethylxanthine to the incubation medium enhanced the incorporation of 32P into 33K protein to about 400% of the original level. Exposure of freshly detached rod outer segments to room light for 90 s decreased the amount of labeled 33K protein to 45% of its original level. The dephosphorylation of labeled 33K protein continued, reaching 12% of the original dark value 10 min after the previously illuminated sample was returned to darkness. Light initiated the phosphorylation of rhodopsin, and rhodopsin phosphorylation continued during the postillumination period of darkness. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi00304a014 |