Reaction of alkylcobalamins with thiols

Carbon-13 NMR spectroscopy and phosphorus-31 NMR spectroscopy have been used to study the reaction of several alkylcobalamins with 2-mercaptoethanol. At alkaline pH, when the thiol is deprotonated, the alkyl-transfer reactions involve a nucleophilic attack of the thiolate anion on the Co-methylene c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1987-07, Vol.26 (15), p.4723-4727
Hauptverfasser: Hogenkamp, Harry P. C, Bratt, Gerald T, Kotchevar, Ann T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbon-13 NMR spectroscopy and phosphorus-31 NMR spectroscopy have been used to study the reaction of several alkylcobalamins with 2-mercaptoethanol. At alkaline pH, when the thiol is deprotonated, the alkyl-transfer reactions involve a nucleophilic attack of the thiolate anion on the Co-methylene carbon of the cobalamins, yielding alkyl thioethers and cob(II)alamin. In these nucleophilic displacement reactions cob(I)alamin is presumably formed as an intermediate. The higher alkylcobalamins react more slowly than methylcobalamin. The lower reactivity of ethyl- and propylcobalamin is probably the basis of the inhibition of the corrinoid-dependent methyl-transfer systems by propyl iodide. The transfer of the upper nucleoside ligand of adenosylcobalamin to 2-mercaptoethanol is a very slow process; S-adenosyl-mercaptoethanol and cob(II)alamin are the final products of the reaction. The dealkylation of (carboxymethyl)cobalamin is a much more facile reaction. At alkaline pH S-(carboxymethyl)mercaptoethanol and cob(II)alamin are produced, while at pH values below 8 the carbon-cobalt bond is cleaved reductively to acetate and cob(II)alamin. The reductive cleavage of the carbon-cobalt bond of (carboxymethyl)cobalamin by 2-mercaptoethanol is extremely fast when the cobalamin is in the "base-off" form. Because we have been unable to detect trans coordination of 2-mercaptoethanol, we favor a mechanism that involves a hydride attack on the Co-methylene carbon of (carboxymethyl)cobalamin rather than a trans attack of the thiol on the cobalt atom.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00389a019