Chlorophyll-proteins of the photosystem II antenna system
The chlorophyll-protein complexes of purified maize photosystem II membranes were separated by a new mild gel electrophoresis system under conditions which maintained all of the major chlorophyll a/b-protein complex (LHCII) in the oligomeric form. This enabled the resolution of three chlorophyll a/b...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1987-09, Vol.262 (27), p.13333-13341 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The chlorophyll-protein complexes of purified maize photosystem II membranes were separated by a new mild gel electrophoresis system under conditions which maintained all of the major chlorophyll a/b-protein complex (LHCII) in the oligomeric form. This enabled the resolution of three chlorophyll a/b-proteins in the 26-31-kDa region which are normally obscured by monomeric LHCII. All chlorophyll a/b-proteins had unique polypeptide compositions and characteristic spectral properties. One of them (CP26) has not previously been described, and another (CP24) appeared to be identical to the connecting antenna of photosystem I (LHCI-680). Both CP24 and CP29 from maize had at least one epitope in common with the light-harvesting antennae of photosystem I, as shown by cross-reactivity with a monoclonal antibody raised against LHCI from barley thylakoids. A complex designated Chla.P2, which was capable of electron transport from diphenylcarbazide to 2,6-dichlorophenolindophenol, was isolated by nondenaturing gel electrophoresis. It lacked CP43, which therefore can be excluded as an essential component of the photosystem II reaction center core. Fractionation of octyl glucoside-solubilized photosystem II membranes in the presence and absence of Mg2+ enabled the isolation of the Chla . P2 complex and revealed the existence of a light-harvesting complex consisting of CP29, CP26, and CP24. This complex and the major light-harvesting system (LHCII) are postulated to transfer excitation energy independently to the photosystem II reaction center via CP43. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/S0021-9258(18)45205-2 |