The sequence and expression of the divergent beta-tubulin in chicken erythrocytes

We report here the complete sequence of a highly divergent chicken erythrocyte beta-tubulin, c beta 6, which appears to represent a major exception to the observation that the primary sequences and sites of expression of beta-tubulin isotypes are conserved within vertebrates. The amino acid sequence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1987-10, Vol.262 (29), p.14305-14312
Hauptverfasser: Murphy, D B, Wallis, K T, Machlin, P S, Ratrie, H, Cleveland, D W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report here the complete sequence of a highly divergent chicken erythrocyte beta-tubulin, c beta 6, which appears to represent a major exception to the observation that the primary sequences and sites of expression of beta-tubulin isotypes are conserved within vertebrates. The amino acid sequence was deduced from overlapping cloned cDNAs identified in a chicken erythroblast cDNA library contained in the expression vector, lambda gt11. Compared with other chicken beta-tubulins, among which the maximum sequence divergence is only 8%, c beta 6-tubulin is more hydrophobic, contains seven fewer net negative charges, and exhibits a surprising 17% overall divergence in its amino acid sequence. DNA and RNA blot analyses show that c beta 6-tubulin is present as a single gene copy in the chicken genome and is specifically expressed in the bone marrow. Comparisons of RNA blots and immunoblots of various cells and tissues confirm that this beta-tubulin isotype is contained specifically in erythrocytes and thrombocytes and accounts for 75% of the beta-tubulin mRNA species contained in developing erythroblasts. Interestingly, c beta 6-tubulin exhibits 18% amino acid sequence divergence relative to MB1, the analogous hematopoietic beta-tubulin contained in mouse.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)47938-0