Effect of phosphorylation and dinitrophenylation on chicken gizzard myosin

Treatment of phosphorylated chicken gizzard myosin which had incorporated 1.5 mol of phosphate per 4.7 x 10(5) g of protein with 1-fluoro-2,4-dinitrobenzene resulted in the modification of the heavy and light chains when 5.8 mol of the reagent were bound to myosin. Concurrently, the K+-ATPase activi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological chemistry and physics and medical NMR 1983, Vol.15 (1), p.37-50
1. Verfasser: Bailin, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Treatment of phosphorylated chicken gizzard myosin which had incorporated 1.5 mol of phosphate per 4.7 x 10(5) g of protein with 1-fluoro-2,4-dinitrobenzene resulted in the modification of the heavy and light chains when 5.8 mol of the reagent were bound to myosin. Concurrently, the K+-ATPase activity was inhibited and the modified myosin possessed actin activated-ATPase activity. Thiolysis of nearly 2 mol of the dinitrophenyl group mainly from the heavy chains (and some light chains) of the modified myosin with 2-mercaptoethanol restored the K+-ATPase activity. Digestion of phosphorylated gizzard myosin with chymotrypsin or papain occurred to a lesser extent than a control myosin. Chymotryptic fragments of phosphorylated and dinitrophenylated myosin were formed at a faster rate than those of dinitrophenylated myosin alone suggesting that phosphorylation of the light chain of Mr 20,000 altered the susceptibility of the heavy chains of myosin to proteolysis. Phosphorylation of dinitrophenylated gizzard myosin which had incorporated 5.5 mol of 1-fluoro-2,4-dinitrobenzene per 4.7 x 10(5) g of protein was the same as that of a control myosin; this was also the case for the thiolyzed dinitrophenylated myosin. In the absence of calcium, phosphorylation of control and dinitrophenylated myosins decreased by 73% suggesting that the phosphorylation reaction was calcium dependent. Phosphorylation and dinitrophenylation induced conformational changes in the light chains of gizzard myosin that may be involved in maintaining the structure of the heavy chain region.
ISSN:0748-6642