Inhibition of the mouse sperm surface alpha-D-mannosidase inhibits sperm-egg binding in vitro

In previous reports from this laboratory, we identified the presence of a novel alpha-D-mannosidase on the surface of rat, mouse, hamster, and human spermatozoa [J Cell Biol 1989; 109:1257-1267 and Biol Reprod 1990; 42:843-858]. Since it has been suggested that mannosyl residues on the egg zona pell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology of reproduction 1991-05, Vol.44 (5), p.913-921
Hauptverfasser: CORNWALL, G. A, TULSIANI, D. R. P, ORGEBIN-CRIST, M.-C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In previous reports from this laboratory, we identified the presence of a novel alpha-D-mannosidase on the surface of rat, mouse, hamster, and human spermatozoa [J Cell Biol 1989; 109:1257-1267 and Biol Reprod 1990; 42:843-858]. Since it has been suggested that mannosyl residues on the egg zona pellucida may be important for sperm-egg binding, studies were undertaken to examine the potential role of the sperm alpha-D-mannosidase during fertilization. Incubation of mouse spermatozoa in the presence of increasing concentrations of the inhibitory sugars, alpha-methyl mannoside, alpha-methyl glucoside, D-mannose, or D-mannitol, resulted in a dose-dependent decrease in the number of spermatozoa bound per egg without a deleterious effect on sperm motility or on the sperm acrosome, and a dose-dependent inhibition of the sperm mannosidase activity. Galactose, however had no effect on sperm-egg binding or on sperm mannosidase activity. Two nucleotide sugars (UDP-GlcNAc and UDP-gal) were also tested and shown to reduce sperm-egg binding but with only a minimal effect on sperm mannosidase activity. In additional studies, spermatozoa incubated in the presence of a mannose-containing oligosaccharide exhibited a dramatic reduction in sperm-egg binding that correlated with a similar inhibition of sperm mannosidase activity. The oligosaccharide substrate did not affect sperm motility or the sperm acrosome. These studies suggest that the sperm alpha-D-mannosidase may play an important role during fertilization.
ISSN:0006-3363
1529-7268
DOI:10.1095/biolreprod44.5.913