Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy

A protease-resistant form of the protein PrP (PrP-res) accumulates in tissues of mammals infected with scrapie, Creutzfeldt-Jakob disease, and related transmissible neurodegenerative diseases. This abnormal form of PrP can aggregate into insoluble amyloid-like fibrils and plaques and has been identi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1991-08, Vol.30 (31), p.7672-7680
Hauptverfasser: Caughey, Byron W, Dong, Aichun, Bhat, Kolari S, Ernst, Darwin, Hayes, Stanley F, Caughey, Winslow S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A protease-resistant form of the protein PrP (PrP-res) accumulates in tissues of mammals infected with scrapie, Creutzfeldt-Jakob disease, and related transmissible neurodegenerative diseases. This abnormal form of PrP can aggregate into insoluble amyloid-like fibrils and plaques and has been identified as the major component of brain fractions enriched for scrapie infectivity. Using a recently developed technique in Fourier transform infrared spectroscopy which allows protein conformational analysis in aqueous media, we have studied the secondary structure of the proteinase K resistant core of PrP-res (PrP-res 27-30) as it exists in highly infectious fibril preparations. Second-derivative analysis of the infrared spectra has enabled us to quantitate the relative amounts of different secondary structures in the PrP-res aggregates. The analysis indicated that PrP-res 27-30 is predominantly composed of beta-sheet (47%), which is consistent with its amyloid-like properties. In addition, significant amounts of turn (31%) and alpha-helix (17%) were identified, indicating that amyloid-like fibrils need not be exclusively beta-sheet. The infrared-based secondary structure compositions were then used as constraints to improve the-theoretical localization of the secondary structures within PrP-res 27-30
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00245a003