Motor Neuron Diversity in Development and Disease

Although often considered as a group, spinal motor neurons are highly diverse in terms of their morphology, connectivity, and functional properties and differ significantly in their response to disease. Recent studies of motor neuron diversity have clarified developmental mechanisms and provided nov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of neuroscience 2010-01, Vol.33 (1), p.409-440
Hauptverfasser: KANNING, Kevin C, KAPLAN, Artem, HENDERSON, Christopher E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although often considered as a group, spinal motor neurons are highly diverse in terms of their morphology, connectivity, and functional properties and differ significantly in their response to disease. Recent studies of motor neuron diversity have clarified developmental mechanisms and provided novel insights into neurodegeneration in amyotrophic lateral sclerosis (ALS). Motor neurons of different classes and subtypes--fast/slow, alpha/gamma--are grouped together into motor pools, each of which innervates a single skeletal muscle. Distinct mechanisms regulate their development. For example, glial cell line-derived neurotrophic factor (GDNF) has effects that are pool-specific on motor neuron connectivity, column-specific on axonal growth, and subtype-specific on survival. In multiple degenerative contexts including ALS, spinal muscular atrophy (SMA), and aging, fast-fatigable (FF) motor units degenerate early, whereas motor neurons innervating slow muscles and those involved in eye movement and pelvic sphincter control are strikingly preserved. Extrinsic and intrinsic mechanisms that confer resistance represent promising therapeutic targets in these currently incurable diseases.
ISSN:0147-006X
1545-4126
DOI:10.1146/annurev.neuro.051508.135722