Experimental studies on removal of microcystin-LR by peat

Cyanotoxins have caused worldwide concerns for their eclectic occurrence and toxic effects, which led to an intensive search of cost-effective techniques for their removal from contaminated waters. A range of biomaterials was tested for their efficacy to adsorb a potent cyanotoxin, microcystin-LR (M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2010-12, Vol.184 (1-3), p.417-424
Hauptverfasser: Sathishkumar, M., Pavagadhi, S., Vijayaraghavan, K., Balasubramanian, R., Ong, S.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cyanotoxins have caused worldwide concerns for their eclectic occurrence and toxic effects, which led to an intensive search of cost-effective techniques for their removal from contaminated waters. A range of biomaterials was tested for their efficacy to adsorb a potent cyanotoxin, microcystin-LR (MCLR). Among these sorbents, peat showed the maximum efficacy to sequester MCLR. The BET (Brunauer–Emmett–Teller) surface area of peat was found to be 12.134m2/g. The pH of the reaction media played a significant role in removal of MCLR; maximum adsorption occurred at pH 3. Kinetic studies showed that the adsorption of MCLR onto peat was a rapid process. The adsorption capacity (Qmax) from the Langmuir model was found to be 255.7μg/g at pH 3. Among various desorption media studied, strong alkali (2N NaOH) showed highest desorption (94%).
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2010.08.051