The regulation of virulence in phytopathogenic Erwinia species: quorum sensing, antibiotics and ecological considerations
Erwinia carotovora is a Gram-negative bacterial phytopathogen that causes soft-rot disease and potato blackleg. The organism is environmentally widespread and exhibits an opportunistic plant pathogenesis. The ability to secrete multiple plant cell wall-degrading enzymes is a key virulence trait and...
Gespeichert in:
Veröffentlicht in: | Antonie van Leeuwenhoek 2002-12, Vol.81 (1-4), p.223-231 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Erwinia carotovora is a Gram-negative bacterial phytopathogen that causes soft-rot disease and potato blackleg. The organism is environmentally widespread and exhibits an opportunistic plant pathogenesis. The ability to secrete multiple plant cell wall-degrading enzymes is a key virulence trait and exoenzyme production is responsive to multiple environmental and physiological cues. One important cue is the cell population density of the pathogen. Cell density is monitored via an acylated homoserine lactone (acyl HSL) signalling molecule, which is thought to diffuse between Erwinia cells in a process now commonly known as 'quorum sensing'. This molecule also acts as the chemical communication signal controlling production of a broad-spectrum beta-lactam antibiotic (1-carbapen-2-em-3-carboxylic acid; carbapenem) synthesised in concert with exoenzyme elaboration, possibly for niche defence. In antibiotic production control, quorum sensing acts at the level of transcriptional activation of the antibiotic biosynthetic cluster. This is achieved via a dedicated LuxR-type protein, CarR that is bound to the signalling molecule. The molecular relay connecting acyl HSL production and exoenzyme induction is not clear, despite the identification of a multitude of global regulatory genes, including those of the RsmA/rsmB system, impinging on enzyme synthesis. Quorum sensing control mediated by acyl HSLs is widespread in Gram-negative bacteria and is responsible for the regulation of diverse phenotypes. Although there is still a paucity of meaningful information on acyl HSL availability and in-situ biological function, there is growing evidence that such molecules play significant roles in microbial ecology. |
---|---|
ISSN: | 0003-6072 1572-9699 |
DOI: | 10.1023/A:1020570802717 |