3D visualization and quantification of rat cortical bone porosity using a desktop micro-CT system: a case study in the tibia
Although micro-computed tomography (micro-CT) has become the gold standard for assessing the 3D structure of trabecular bone, its extension to cortical bone microstructure has been relatively limited. Desktop micro-CT has been employed to assess cortical bone porosity of humans, whereas that of smal...
Gespeichert in:
Veröffentlicht in: | Journal of microscopy (Oxford) 2010-10, Vol.240 (1), p.32-37 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although micro-computed tomography (micro-CT) has become the gold standard for assessing the 3D structure of trabecular bone, its extension to cortical bone microstructure has been relatively limited. Desktop micro-CT has been employed to assess cortical bone porosity of humans, whereas that of smaller animals, such as mice and rats, has thus far only been imaged using synchrotron-based micro-CT. The goal of this study was to determine if it is possible to visualize and quantify rat cortical porosity using desktop micro-CT. Tibiae (n = 10) from 30-week-old female Sprague-Dawley rats were imaged with micro-CT (3 μm nominal resolution) and sequential ground sections were then prepared. Bland-Altman plots were constructed to compare per cent porosity and mean canal diameter from micro-CT (3D) versus histology (2D). The mean difference or bias (histology - micro-CT; ±95% confidence interval) for per cent porosity was found to be -0.15% (±2.57%), which was not significantly different from zero (P= 0.720). Canal diameter had a bias (±95% confidence interval) of -5.73 μm (±4.02 μm) which was found to be significantly different from zero (P < 0.001). The results indicated that cortical porosity in rat bone can indeed be visualized by desktop micro-CT. Quantitative assessment of per cent porosity provided unbiased results, whereas direct analysis of mean canal diameter was overestimated by micro-CT. Thus, although higher resolution, such as that available from synchrotron micro-CT, may ultimately be required for precise geometric measurements, desktop micro-CT - which is far more accessible - is capable of yielding comparable measures of porosity and holds great promise for assessment of the 3D arrangement of cortical porosity in the rat. |
---|---|
ISSN: | 0022-2720 1365-2818 |
DOI: | 10.1111/j.1365-2818.2010.03381.x |