Heat blanketing envelopes and thermal radiation of strongly magnetized neutron stars

Strong (B≫109 G) and superstrong (B≳1014 G) magnetic fields profoundly affect many thermodynamic and kinetic characteristics of dense plasmas in neutron star envelopes. In particular, they produce strongly anisotropic thermal conductivity in the neutron star crust and modify the equation of state an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysics and space science 2007-04, Vol.308 (1-4), p.353-361
Hauptverfasser: Potekhin, Alexander Y, Chabrier, Gilles, Yakovlev, Dmitry G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Strong (B≫109 G) and superstrong (B≳1014 G) magnetic fields profoundly affect many thermodynamic and kinetic characteristics of dense plasmas in neutron star envelopes. In particular, they produce strongly anisotropic thermal conductivity in the neutron star crust and modify the equation of state and radiative opacities in the atmosphere, which are major ingredients of the cooling theory and spectral atmosphere models. As a result, both the radiation spectrum and the thermal luminosity of a neutron star can be affected by the magnetic field. We briefly review these effects and demonstrate the influence of magnetic field strength on the thermal structure of an isolated neutron star, putting emphasis on the differences brought about by the superstrong fields and high temperatures of magnetars. For the latter objects, it is important to take proper account of a combined effect of the magnetic field on thermal conduction and neutrino emission at densities ρ≳1010 g cm−3. We show that the neutrino emission puts a B-dependent upper limit on the effective surface temperature of a cooling neutron star.
ISSN:0004-640X
1572-946X
DOI:10.1007/s10509-007-9362-6