Sequential solution to Kepler’s equation

Seven sequential starter values for solving Kepler’s equation are proposed for fast orbit propagation. The proposed methods have constant complexity (not iterative), do not require pre-computed data, and can be implemented in just a few lines of code. The resulting sequential orbit propagation techn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Celestial mechanics and dynamical astronomy 2010-09, Vol.108 (1), p.59-72
Hauptverfasser: Davis, Jeremy J., Mortari, Daniele, Bruccoleri, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue 1
container_start_page 59
container_title Celestial mechanics and dynamical astronomy
container_volume 108
creator Davis, Jeremy J.
Mortari, Daniele
Bruccoleri, Christian
description Seven sequential starter values for solving Kepler’s equation are proposed for fast orbit propagation. The proposed methods have constant complexity (not iterative), do not require pre-computed data, and can be implemented in just a few lines of code. The resulting sequential orbit propagation techniques can be done at different levels of accuracy and speed, depending essentially on the value of orbit eccentricity. Accuracy and algorithmic complexity are evaluated for all the proposed approaches and compared with several existing single-point techniques to solve Kepler’s equation. The new methods obtain improved accuracy at lower computational cost as compared to the best existing methods.
doi_str_mv 10.1007/s10569-010-9292-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_807264995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>807264995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-23ef64f9e00cfb0db2cd6d7d045444f670253c36d10bd92a31afde62df71e40f3</originalsourceid><addsrcrecordid>eNp1kEtKBDEURYMo2H4W4KxwIgjRl39lKI0_bHCgjkO6kkg11ZU2qRo4cxtuz5WYpgRBcPTgce7lchA6IXBBANRlJiCkxkAAa6op5jtoRoSiWHNV76IZaMow1aLeRwc5rwBAgBYzdP7k30bfD63tqhy7cWhjXw2xevCbzqevj89cFcBu30doL9gu--Ofe4hebq6f53d48Xh7P79a4IZxNWDKfJA8aA_QhCW4JW2cdMoBF5zzIBVQwRomHYGl09QyYoPzkrqgiOcQ2CE6m3o3KZZteTDrNje-62zv45hNDYpKrrUo5OkfchXH1JdxRnEJspa8LhCZoCbFnJMPZpPatU3vhoDZujOTO1Pcma07w0uGTplc2P7Vp9_i_0Pfd6xxZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746068648</pqid></control><display><type>article</type><title>Sequential solution to Kepler’s equation</title><source>SpringerNature Journals</source><creator>Davis, Jeremy J. ; Mortari, Daniele ; Bruccoleri, Christian</creator><creatorcontrib>Davis, Jeremy J. ; Mortari, Daniele ; Bruccoleri, Christian</creatorcontrib><description>Seven sequential starter values for solving Kepler’s equation are proposed for fast orbit propagation. The proposed methods have constant complexity (not iterative), do not require pre-computed data, and can be implemented in just a few lines of code. The resulting sequential orbit propagation techniques can be done at different levels of accuracy and speed, depending essentially on the value of orbit eccentricity. Accuracy and algorithmic complexity are evaluated for all the proposed approaches and compared with several existing single-point techniques to solve Kepler’s equation. The new methods obtain improved accuracy at lower computational cost as compared to the best existing methods.</description><identifier>ISSN: 0923-2958</identifier><identifier>EISSN: 1572-9478</identifier><identifier>DOI: 10.1007/s10569-010-9292-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace Technology and Astronautics ; Algorithms ; Astrophysics ; Astrophysics and Astroparticles ; Classical Mechanics ; Dynamical Systems and Ergodic Theory ; Geophysics/Geodesy ; Mathematical analysis ; Orbits ; Original Article ; Physics ; Physics and Astronomy</subject><ispartof>Celestial mechanics and dynamical astronomy, 2010-09, Vol.108 (1), p.59-72</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-23ef64f9e00cfb0db2cd6d7d045444f670253c36d10bd92a31afde62df71e40f3</citedby><cites>FETCH-LOGICAL-c347t-23ef64f9e00cfb0db2cd6d7d045444f670253c36d10bd92a31afde62df71e40f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10569-010-9292-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10569-010-9292-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Davis, Jeremy J.</creatorcontrib><creatorcontrib>Mortari, Daniele</creatorcontrib><creatorcontrib>Bruccoleri, Christian</creatorcontrib><title>Sequential solution to Kepler’s equation</title><title>Celestial mechanics and dynamical astronomy</title><addtitle>Celest Mech Dyn Astr</addtitle><description>Seven sequential starter values for solving Kepler’s equation are proposed for fast orbit propagation. The proposed methods have constant complexity (not iterative), do not require pre-computed data, and can be implemented in just a few lines of code. The resulting sequential orbit propagation techniques can be done at different levels of accuracy and speed, depending essentially on the value of orbit eccentricity. Accuracy and algorithmic complexity are evaluated for all the proposed approaches and compared with several existing single-point techniques to solve Kepler’s equation. The new methods obtain improved accuracy at lower computational cost as compared to the best existing methods.</description><subject>Aerospace Technology and Astronautics</subject><subject>Algorithms</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Classical Mechanics</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Geophysics/Geodesy</subject><subject>Mathematical analysis</subject><subject>Orbits</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0923-2958</issn><issn>1572-9478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtKBDEURYMo2H4W4KxwIgjRl39lKI0_bHCgjkO6kkg11ZU2qRo4cxtuz5WYpgRBcPTgce7lchA6IXBBANRlJiCkxkAAa6op5jtoRoSiWHNV76IZaMow1aLeRwc5rwBAgBYzdP7k30bfD63tqhy7cWhjXw2xevCbzqevj89cFcBu30doL9gu--Ofe4hebq6f53d48Xh7P79a4IZxNWDKfJA8aA_QhCW4JW2cdMoBF5zzIBVQwRomHYGl09QyYoPzkrqgiOcQ2CE6m3o3KZZteTDrNje-62zv45hNDYpKrrUo5OkfchXH1JdxRnEJspa8LhCZoCbFnJMPZpPatU3vhoDZujOTO1Pcma07w0uGTplc2P7Vp9_i_0Pfd6xxZw</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Davis, Jeremy J.</creator><creator>Mortari, Daniele</creator><creator>Bruccoleri, Christian</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20100901</creationdate><title>Sequential solution to Kepler’s equation</title><author>Davis, Jeremy J. ; Mortari, Daniele ; Bruccoleri, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-23ef64f9e00cfb0db2cd6d7d045444f670253c36d10bd92a31afde62df71e40f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Algorithms</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Classical Mechanics</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Geophysics/Geodesy</topic><topic>Mathematical analysis</topic><topic>Orbits</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davis, Jeremy J.</creatorcontrib><creatorcontrib>Mortari, Daniele</creatorcontrib><creatorcontrib>Bruccoleri, Christian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Celestial mechanics and dynamical astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, Jeremy J.</au><au>Mortari, Daniele</au><au>Bruccoleri, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential solution to Kepler’s equation</atitle><jtitle>Celestial mechanics and dynamical astronomy</jtitle><stitle>Celest Mech Dyn Astr</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>108</volume><issue>1</issue><spage>59</spage><epage>72</epage><pages>59-72</pages><issn>0923-2958</issn><eissn>1572-9478</eissn><abstract>Seven sequential starter values for solving Kepler’s equation are proposed for fast orbit propagation. The proposed methods have constant complexity (not iterative), do not require pre-computed data, and can be implemented in just a few lines of code. The resulting sequential orbit propagation techniques can be done at different levels of accuracy and speed, depending essentially on the value of orbit eccentricity. Accuracy and algorithmic complexity are evaluated for all the proposed approaches and compared with several existing single-point techniques to solve Kepler’s equation. The new methods obtain improved accuracy at lower computational cost as compared to the best existing methods.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10569-010-9292-4</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0923-2958
ispartof Celestial mechanics and dynamical astronomy, 2010-09, Vol.108 (1), p.59-72
issn 0923-2958
1572-9478
language eng
recordid cdi_proquest_miscellaneous_807264995
source SpringerNature Journals
subjects Aerospace Technology and Astronautics
Algorithms
Astrophysics
Astrophysics and Astroparticles
Classical Mechanics
Dynamical Systems and Ergodic Theory
Geophysics/Geodesy
Mathematical analysis
Orbits
Original Article
Physics
Physics and Astronomy
title Sequential solution to Kepler’s equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20solution%20to%20Kepler%E2%80%99s%20equation&rft.jtitle=Celestial%20mechanics%20and%20dynamical%20astronomy&rft.au=Davis,%20Jeremy%20J.&rft.date=2010-09-01&rft.volume=108&rft.issue=1&rft.spage=59&rft.epage=72&rft.pages=59-72&rft.issn=0923-2958&rft.eissn=1572-9478&rft_id=info:doi/10.1007/s10569-010-9292-4&rft_dat=%3Cproquest_cross%3E807264995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746068648&rft_id=info:pmid/&rfr_iscdi=true