Sequential solution to Kepler’s equation
Seven sequential starter values for solving Kepler’s equation are proposed for fast orbit propagation. The proposed methods have constant complexity (not iterative), do not require pre-computed data, and can be implemented in just a few lines of code. The resulting sequential orbit propagation techn...
Gespeichert in:
Veröffentlicht in: | Celestial mechanics and dynamical astronomy 2010-09, Vol.108 (1), p.59-72 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | 1 |
container_start_page | 59 |
container_title | Celestial mechanics and dynamical astronomy |
container_volume | 108 |
creator | Davis, Jeremy J. Mortari, Daniele Bruccoleri, Christian |
description | Seven sequential starter values for solving Kepler’s equation are proposed for fast orbit propagation. The proposed methods have constant complexity (not iterative), do not require pre-computed data, and can be implemented in just a few lines of code. The resulting sequential orbit propagation techniques can be done at different levels of accuracy and speed, depending essentially on the value of orbit eccentricity. Accuracy and algorithmic complexity are evaluated for all the proposed approaches and compared with several existing single-point techniques to solve Kepler’s equation. The new methods obtain improved accuracy at lower computational cost as compared to the best existing methods. |
doi_str_mv | 10.1007/s10569-010-9292-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_807264995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>807264995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-23ef64f9e00cfb0db2cd6d7d045444f670253c36d10bd92a31afde62df71e40f3</originalsourceid><addsrcrecordid>eNp1kEtKBDEURYMo2H4W4KxwIgjRl39lKI0_bHCgjkO6kkg11ZU2qRo4cxtuz5WYpgRBcPTgce7lchA6IXBBANRlJiCkxkAAa6op5jtoRoSiWHNV76IZaMow1aLeRwc5rwBAgBYzdP7k30bfD63tqhy7cWhjXw2xevCbzqevj89cFcBu30doL9gu--Ofe4hebq6f53d48Xh7P79a4IZxNWDKfJA8aA_QhCW4JW2cdMoBF5zzIBVQwRomHYGl09QyYoPzkrqgiOcQ2CE6m3o3KZZteTDrNje-62zv45hNDYpKrrUo5OkfchXH1JdxRnEJspa8LhCZoCbFnJMPZpPatU3vhoDZujOTO1Pcma07w0uGTplc2P7Vp9_i_0Pfd6xxZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746068648</pqid></control><display><type>article</type><title>Sequential solution to Kepler’s equation</title><source>SpringerNature Journals</source><creator>Davis, Jeremy J. ; Mortari, Daniele ; Bruccoleri, Christian</creator><creatorcontrib>Davis, Jeremy J. ; Mortari, Daniele ; Bruccoleri, Christian</creatorcontrib><description>Seven sequential starter values for solving Kepler’s equation are proposed for fast orbit propagation. The proposed methods have constant complexity (not iterative), do not require pre-computed data, and can be implemented in just a few lines of code. The resulting sequential orbit propagation techniques can be done at different levels of accuracy and speed, depending essentially on the value of orbit eccentricity. Accuracy and algorithmic complexity are evaluated for all the proposed approaches and compared with several existing single-point techniques to solve Kepler’s equation. The new methods obtain improved accuracy at lower computational cost as compared to the best existing methods.</description><identifier>ISSN: 0923-2958</identifier><identifier>EISSN: 1572-9478</identifier><identifier>DOI: 10.1007/s10569-010-9292-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace Technology and Astronautics ; Algorithms ; Astrophysics ; Astrophysics and Astroparticles ; Classical Mechanics ; Dynamical Systems and Ergodic Theory ; Geophysics/Geodesy ; Mathematical analysis ; Orbits ; Original Article ; Physics ; Physics and Astronomy</subject><ispartof>Celestial mechanics and dynamical astronomy, 2010-09, Vol.108 (1), p.59-72</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-23ef64f9e00cfb0db2cd6d7d045444f670253c36d10bd92a31afde62df71e40f3</citedby><cites>FETCH-LOGICAL-c347t-23ef64f9e00cfb0db2cd6d7d045444f670253c36d10bd92a31afde62df71e40f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10569-010-9292-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10569-010-9292-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Davis, Jeremy J.</creatorcontrib><creatorcontrib>Mortari, Daniele</creatorcontrib><creatorcontrib>Bruccoleri, Christian</creatorcontrib><title>Sequential solution to Kepler’s equation</title><title>Celestial mechanics and dynamical astronomy</title><addtitle>Celest Mech Dyn Astr</addtitle><description>Seven sequential starter values for solving Kepler’s equation are proposed for fast orbit propagation. The proposed methods have constant complexity (not iterative), do not require pre-computed data, and can be implemented in just a few lines of code. The resulting sequential orbit propagation techniques can be done at different levels of accuracy and speed, depending essentially on the value of orbit eccentricity. Accuracy and algorithmic complexity are evaluated for all the proposed approaches and compared with several existing single-point techniques to solve Kepler’s equation. The new methods obtain improved accuracy at lower computational cost as compared to the best existing methods.</description><subject>Aerospace Technology and Astronautics</subject><subject>Algorithms</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Classical Mechanics</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Geophysics/Geodesy</subject><subject>Mathematical analysis</subject><subject>Orbits</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0923-2958</issn><issn>1572-9478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtKBDEURYMo2H4W4KxwIgjRl39lKI0_bHCgjkO6kkg11ZU2qRo4cxtuz5WYpgRBcPTgce7lchA6IXBBANRlJiCkxkAAa6op5jtoRoSiWHNV76IZaMow1aLeRwc5rwBAgBYzdP7k30bfD63tqhy7cWhjXw2xevCbzqevj89cFcBu30doL9gu--Ofe4hebq6f53d48Xh7P79a4IZxNWDKfJA8aA_QhCW4JW2cdMoBF5zzIBVQwRomHYGl09QyYoPzkrqgiOcQ2CE6m3o3KZZteTDrNje-62zv45hNDYpKrrUo5OkfchXH1JdxRnEJspa8LhCZoCbFnJMPZpPatU3vhoDZujOTO1Pcma07w0uGTplc2P7Vp9_i_0Pfd6xxZw</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Davis, Jeremy J.</creator><creator>Mortari, Daniele</creator><creator>Bruccoleri, Christian</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20100901</creationdate><title>Sequential solution to Kepler’s equation</title><author>Davis, Jeremy J. ; Mortari, Daniele ; Bruccoleri, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-23ef64f9e00cfb0db2cd6d7d045444f670253c36d10bd92a31afde62df71e40f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Algorithms</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Classical Mechanics</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Geophysics/Geodesy</topic><topic>Mathematical analysis</topic><topic>Orbits</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davis, Jeremy J.</creatorcontrib><creatorcontrib>Mortari, Daniele</creatorcontrib><creatorcontrib>Bruccoleri, Christian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Celestial mechanics and dynamical astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, Jeremy J.</au><au>Mortari, Daniele</au><au>Bruccoleri, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential solution to Kepler’s equation</atitle><jtitle>Celestial mechanics and dynamical astronomy</jtitle><stitle>Celest Mech Dyn Astr</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>108</volume><issue>1</issue><spage>59</spage><epage>72</epage><pages>59-72</pages><issn>0923-2958</issn><eissn>1572-9478</eissn><abstract>Seven sequential starter values for solving Kepler’s equation are proposed for fast orbit propagation. The proposed methods have constant complexity (not iterative), do not require pre-computed data, and can be implemented in just a few lines of code. The resulting sequential orbit propagation techniques can be done at different levels of accuracy and speed, depending essentially on the value of orbit eccentricity. Accuracy and algorithmic complexity are evaluated for all the proposed approaches and compared with several existing single-point techniques to solve Kepler’s equation. The new methods obtain improved accuracy at lower computational cost as compared to the best existing methods.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10569-010-9292-4</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0923-2958 |
ispartof | Celestial mechanics and dynamical astronomy, 2010-09, Vol.108 (1), p.59-72 |
issn | 0923-2958 1572-9478 |
language | eng |
recordid | cdi_proquest_miscellaneous_807264995 |
source | SpringerNature Journals |
subjects | Aerospace Technology and Astronautics Algorithms Astrophysics Astrophysics and Astroparticles Classical Mechanics Dynamical Systems and Ergodic Theory Geophysics/Geodesy Mathematical analysis Orbits Original Article Physics Physics and Astronomy |
title | Sequential solution to Kepler’s equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20solution%20to%20Kepler%E2%80%99s%20equation&rft.jtitle=Celestial%20mechanics%20and%20dynamical%20astronomy&rft.au=Davis,%20Jeremy%20J.&rft.date=2010-09-01&rft.volume=108&rft.issue=1&rft.spage=59&rft.epage=72&rft.pages=59-72&rft.issn=0923-2958&rft.eissn=1572-9478&rft_id=info:doi/10.1007/s10569-010-9292-4&rft_dat=%3Cproquest_cross%3E807264995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746068648&rft_id=info:pmid/&rfr_iscdi=true |