Sequential solution to Kepler’s equation
Seven sequential starter values for solving Kepler’s equation are proposed for fast orbit propagation. The proposed methods have constant complexity (not iterative), do not require pre-computed data, and can be implemented in just a few lines of code. The resulting sequential orbit propagation techn...
Gespeichert in:
Veröffentlicht in: | Celestial mechanics and dynamical astronomy 2010-09, Vol.108 (1), p.59-72 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Seven sequential starter values for solving Kepler’s equation are proposed for fast orbit propagation. The proposed methods have constant complexity (not iterative), do not require pre-computed data, and can be implemented in just a few lines of code. The resulting sequential orbit propagation techniques can be done at different levels of accuracy and speed, depending essentially on the value of orbit eccentricity. Accuracy and algorithmic complexity are evaluated for all the proposed approaches and compared with several existing single-point techniques to solve Kepler’s equation. The new methods obtain improved accuracy at lower computational cost as compared to the best existing methods. |
---|---|
ISSN: | 0923-2958 1572-9478 |
DOI: | 10.1007/s10569-010-9292-4 |