Are HVCs Produced in Galactic Fountains?

Three-dimensional simulations of the disk-halo interaction show the formation of a thick HI and HII gas disk with different scale heights. The thick HI disk prevents the disk gas from expanding freely upwards, unless some highly energetic event such as chimneys occurs, whereas the thick HII disk act...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysics and space science 2000-07, Vol.272 (1-3), p.23-30
1. Verfasser: de Avillez, Ma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue 1-3
container_start_page 23
container_title Astrophysics and space science
container_volume 272
creator de Avillez, Ma
description Three-dimensional simulations of the disk-halo interaction show the formation of a thick HI and HII gas disk with different scale heights. The thick HI disk prevents the disk gas from expanding freely upwards, unless some highly energetic event such as chimneys occurs, whereas the thick HII disk acts as a disk-halo interaction region from where the hot ionized gas flows freely into the halo. The upflowing gas reaches the maximum height at z 9.3 ± 1 kpc becoming thermally unstable due to radiative losses, and condenses into HI clouds. Because the major fraction of the gas is gravitationally bound to the Galaxy, the cold gas returns to the disk. The descending clouds will have at some height high velocities. In a period of 200 Myr of fountain evolution, some 10 percent of the total number of clouds are HVCs.[PUBLICATION ABSTRACT]
doi_str_mv 10.1023/A:1002616817343
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_807264624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2139404881</sourcerecordid><originalsourceid>FETCH-LOGICAL-p212t-7102bb6bccab410117a993e451f98402d21ea9afbaab3789bf4318eba100b6083</originalsourceid><addsrcrecordid>eNpdjk1LxDAURYMoWEfXbosb3VTfS9J8uJFSnBlhQBcqsysvaQodajs27f-3oCtXlwuHw2HsGuEegYuH4hEBuEJlUAspTliCueaZlWp_yhIAkJmSsD9nFzEelmuV1Qm7K8aQbj_LmL6NQz37UKdtn26oIz-1Pl0Pcz9R28enS3bWUBfD1d-u2Mf6-b3cZrvXzUtZ7LIjRz5lemlxTjnvyUkERE3WiiBzbKyRwGuOgSw1jsgJbaxrpEATHC3xToERK3b76z2Ow_cc4lR9tdGHrqM-DHOsDGiupOJyIW_-kYdhHvslrtI5WMwF5-IH7klOiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>750915322</pqid></control><display><type>article</type><title>Are HVCs Produced in Galactic Fountains?</title><source>SpringerLink Journals - AutoHoldings</source><creator>de Avillez, Ma</creator><creatorcontrib>de Avillez, Ma</creatorcontrib><description>Three-dimensional simulations of the disk-halo interaction show the formation of a thick HI and HII gas disk with different scale heights. The thick HI disk prevents the disk gas from expanding freely upwards, unless some highly energetic event such as chimneys occurs, whereas the thick HII disk acts as a disk-halo interaction region from where the hot ionized gas flows freely into the halo. The upflowing gas reaches the maximum height at z 9.3 ± 1 kpc becoming thermally unstable due to radiative losses, and condenses into HI clouds. Because the major fraction of the gas is gravitationally bound to the Galaxy, the cold gas returns to the disk. The descending clouds will have at some height high velocities. In a period of 200 Myr of fountain evolution, some 10 percent of the total number of clouds are HVCs.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0004-640X</identifier><identifier>EISSN: 1572-946X</identifier><identifier>DOI: 10.1023/A:1002616817343</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Astrophysics ; Gases ; Simulation ; Stars &amp; galaxies</subject><ispartof>Astrophysics and space science, 2000-07, Vol.272 (1-3), p.23-30</ispartof><rights>Kluwer Academic Publishers 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>de Avillez, Ma</creatorcontrib><title>Are HVCs Produced in Galactic Fountains?</title><title>Astrophysics and space science</title><description>Three-dimensional simulations of the disk-halo interaction show the formation of a thick HI and HII gas disk with different scale heights. The thick HI disk prevents the disk gas from expanding freely upwards, unless some highly energetic event such as chimneys occurs, whereas the thick HII disk acts as a disk-halo interaction region from where the hot ionized gas flows freely into the halo. The upflowing gas reaches the maximum height at z 9.3 ± 1 kpc becoming thermally unstable due to radiative losses, and condenses into HI clouds. Because the major fraction of the gas is gravitationally bound to the Galaxy, the cold gas returns to the disk. The descending clouds will have at some height high velocities. In a period of 200 Myr of fountain evolution, some 10 percent of the total number of clouds are HVCs.[PUBLICATION ABSTRACT]</description><subject>Astrophysics</subject><subject>Gases</subject><subject>Simulation</subject><subject>Stars &amp; galaxies</subject><issn>0004-640X</issn><issn>1572-946X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdjk1LxDAURYMoWEfXbosb3VTfS9J8uJFSnBlhQBcqsysvaQodajs27f-3oCtXlwuHw2HsGuEegYuH4hEBuEJlUAspTliCueaZlWp_yhIAkJmSsD9nFzEelmuV1Qm7K8aQbj_LmL6NQz37UKdtn26oIz-1Pl0Pcz9R28enS3bWUBfD1d-u2Mf6-b3cZrvXzUtZ7LIjRz5lemlxTjnvyUkERE3WiiBzbKyRwGuOgSw1jsgJbaxrpEATHC3xToERK3b76z2Ow_cc4lR9tdGHrqM-DHOsDGiupOJyIW_-kYdhHvslrtI5WMwF5-IH7klOiw</recordid><startdate>20000701</startdate><enddate>20000701</enddate><creator>de Avillez, Ma</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20000701</creationdate><title>Are HVCs Produced in Galactic Fountains?</title><author>de Avillez, Ma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p212t-7102bb6bccab410117a993e451f98402d21ea9afbaab3789bf4318eba100b6083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Astrophysics</topic><topic>Gases</topic><topic>Simulation</topic><topic>Stars &amp; galaxies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Avillez, Ma</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Astrophysics and space science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Avillez, Ma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Are HVCs Produced in Galactic Fountains?</atitle><jtitle>Astrophysics and space science</jtitle><date>2000-07-01</date><risdate>2000</risdate><volume>272</volume><issue>1-3</issue><spage>23</spage><epage>30</epage><pages>23-30</pages><issn>0004-640X</issn><eissn>1572-946X</eissn><abstract>Three-dimensional simulations of the disk-halo interaction show the formation of a thick HI and HII gas disk with different scale heights. The thick HI disk prevents the disk gas from expanding freely upwards, unless some highly energetic event such as chimneys occurs, whereas the thick HII disk acts as a disk-halo interaction region from where the hot ionized gas flows freely into the halo. The upflowing gas reaches the maximum height at z 9.3 ± 1 kpc becoming thermally unstable due to radiative losses, and condenses into HI clouds. Because the major fraction of the gas is gravitationally bound to the Galaxy, the cold gas returns to the disk. The descending clouds will have at some height high velocities. In a period of 200 Myr of fountain evolution, some 10 percent of the total number of clouds are HVCs.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1002616817343</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0004-640X
ispartof Astrophysics and space science, 2000-07, Vol.272 (1-3), p.23-30
issn 0004-640X
1572-946X
language eng
recordid cdi_proquest_miscellaneous_807264624
source SpringerLink Journals - AutoHoldings
subjects Astrophysics
Gases
Simulation
Stars & galaxies
title Are HVCs Produced in Galactic Fountains?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Are%20HVCs%20Produced%20in%20Galactic%20Fountains?&rft.jtitle=Astrophysics%20and%20space%20science&rft.au=de%20Avillez,%20Ma&rft.date=2000-07-01&rft.volume=272&rft.issue=1-3&rft.spage=23&rft.epage=30&rft.pages=23-30&rft.issn=0004-640X&rft.eissn=1572-946X&rft_id=info:doi/10.1023/A:1002616817343&rft_dat=%3Cproquest%3E2139404881%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=750915322&rft_id=info:pmid/&rfr_iscdi=true