Are HVCs Produced in Galactic Fountains?
Three-dimensional simulations of the disk-halo interaction show the formation of a thick HI and HII gas disk with different scale heights. The thick HI disk prevents the disk gas from expanding freely upwards, unless some highly energetic event such as chimneys occurs, whereas the thick HII disk act...
Gespeichert in:
Veröffentlicht in: | Astrophysics and space science 2000-07, Vol.272 (1-3), p.23-30 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | 1-3 |
container_start_page | 23 |
container_title | Astrophysics and space science |
container_volume | 272 |
creator | de Avillez, Ma |
description | Three-dimensional simulations of the disk-halo interaction show the formation of a thick HI and HII gas disk with different scale heights. The thick HI disk prevents the disk gas from expanding freely upwards, unless some highly energetic event such as chimneys occurs, whereas the thick HII disk acts as a disk-halo interaction region from where the hot ionized gas flows freely into the halo. The upflowing gas reaches the maximum height at z 9.3 ± 1 kpc becoming thermally unstable due to radiative losses, and condenses into HI clouds. Because the major fraction of the gas is gravitationally bound to the Galaxy, the cold gas returns to the disk. The descending clouds will have at some height high velocities. In a period of 200 Myr of fountain evolution, some 10 percent of the total number of clouds are HVCs.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1023/A:1002616817343 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_807264624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2139404881</sourcerecordid><originalsourceid>FETCH-LOGICAL-p212t-7102bb6bccab410117a993e451f98402d21ea9afbaab3789bf4318eba100b6083</originalsourceid><addsrcrecordid>eNpdjk1LxDAURYMoWEfXbosb3VTfS9J8uJFSnBlhQBcqsysvaQodajs27f-3oCtXlwuHw2HsGuEegYuH4hEBuEJlUAspTliCueaZlWp_yhIAkJmSsD9nFzEelmuV1Qm7K8aQbj_LmL6NQz37UKdtn26oIz-1Pl0Pcz9R28enS3bWUBfD1d-u2Mf6-b3cZrvXzUtZ7LIjRz5lemlxTjnvyUkERE3WiiBzbKyRwGuOgSw1jsgJbaxrpEATHC3xToERK3b76z2Ow_cc4lR9tdGHrqM-DHOsDGiupOJyIW_-kYdhHvslrtI5WMwF5-IH7klOiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>750915322</pqid></control><display><type>article</type><title>Are HVCs Produced in Galactic Fountains?</title><source>SpringerLink Journals - AutoHoldings</source><creator>de Avillez, Ma</creator><creatorcontrib>de Avillez, Ma</creatorcontrib><description>Three-dimensional simulations of the disk-halo interaction show the formation of a thick HI and HII gas disk with different scale heights. The thick HI disk prevents the disk gas from expanding freely upwards, unless some highly energetic event such as chimneys occurs, whereas the thick HII disk acts as a disk-halo interaction region from where the hot ionized gas flows freely into the halo. The upflowing gas reaches the maximum height at z 9.3 ± 1 kpc becoming thermally unstable due to radiative losses, and condenses into HI clouds. Because the major fraction of the gas is gravitationally bound to the Galaxy, the cold gas returns to the disk. The descending clouds will have at some height high velocities. In a period of 200 Myr of fountain evolution, some 10 percent of the total number of clouds are HVCs.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0004-640X</identifier><identifier>EISSN: 1572-946X</identifier><identifier>DOI: 10.1023/A:1002616817343</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Astrophysics ; Gases ; Simulation ; Stars & galaxies</subject><ispartof>Astrophysics and space science, 2000-07, Vol.272 (1-3), p.23-30</ispartof><rights>Kluwer Academic Publishers 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>de Avillez, Ma</creatorcontrib><title>Are HVCs Produced in Galactic Fountains?</title><title>Astrophysics and space science</title><description>Three-dimensional simulations of the disk-halo interaction show the formation of a thick HI and HII gas disk with different scale heights. The thick HI disk prevents the disk gas from expanding freely upwards, unless some highly energetic event such as chimneys occurs, whereas the thick HII disk acts as a disk-halo interaction region from where the hot ionized gas flows freely into the halo. The upflowing gas reaches the maximum height at z 9.3 ± 1 kpc becoming thermally unstable due to radiative losses, and condenses into HI clouds. Because the major fraction of the gas is gravitationally bound to the Galaxy, the cold gas returns to the disk. The descending clouds will have at some height high velocities. In a period of 200 Myr of fountain evolution, some 10 percent of the total number of clouds are HVCs.[PUBLICATION ABSTRACT]</description><subject>Astrophysics</subject><subject>Gases</subject><subject>Simulation</subject><subject>Stars & galaxies</subject><issn>0004-640X</issn><issn>1572-946X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdjk1LxDAURYMoWEfXbosb3VTfS9J8uJFSnBlhQBcqsysvaQodajs27f-3oCtXlwuHw2HsGuEegYuH4hEBuEJlUAspTliCueaZlWp_yhIAkJmSsD9nFzEelmuV1Qm7K8aQbj_LmL6NQz37UKdtn26oIz-1Pl0Pcz9R28enS3bWUBfD1d-u2Mf6-b3cZrvXzUtZ7LIjRz5lemlxTjnvyUkERE3WiiBzbKyRwGuOgSw1jsgJbaxrpEATHC3xToERK3b76z2Ow_cc4lR9tdGHrqM-DHOsDGiupOJyIW_-kYdhHvslrtI5WMwF5-IH7klOiw</recordid><startdate>20000701</startdate><enddate>20000701</enddate><creator>de Avillez, Ma</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20000701</creationdate><title>Are HVCs Produced in Galactic Fountains?</title><author>de Avillez, Ma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p212t-7102bb6bccab410117a993e451f98402d21ea9afbaab3789bf4318eba100b6083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Astrophysics</topic><topic>Gases</topic><topic>Simulation</topic><topic>Stars & galaxies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Avillez, Ma</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Astrophysics and space science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Avillez, Ma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Are HVCs Produced in Galactic Fountains?</atitle><jtitle>Astrophysics and space science</jtitle><date>2000-07-01</date><risdate>2000</risdate><volume>272</volume><issue>1-3</issue><spage>23</spage><epage>30</epage><pages>23-30</pages><issn>0004-640X</issn><eissn>1572-946X</eissn><abstract>Three-dimensional simulations of the disk-halo interaction show the formation of a thick HI and HII gas disk with different scale heights. The thick HI disk prevents the disk gas from expanding freely upwards, unless some highly energetic event such as chimneys occurs, whereas the thick HII disk acts as a disk-halo interaction region from where the hot ionized gas flows freely into the halo. The upflowing gas reaches the maximum height at z 9.3 ± 1 kpc becoming thermally unstable due to radiative losses, and condenses into HI clouds. Because the major fraction of the gas is gravitationally bound to the Galaxy, the cold gas returns to the disk. The descending clouds will have at some height high velocities. In a period of 200 Myr of fountain evolution, some 10 percent of the total number of clouds are HVCs.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1002616817343</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-640X |
ispartof | Astrophysics and space science, 2000-07, Vol.272 (1-3), p.23-30 |
issn | 0004-640X 1572-946X |
language | eng |
recordid | cdi_proquest_miscellaneous_807264624 |
source | SpringerLink Journals - AutoHoldings |
subjects | Astrophysics Gases Simulation Stars & galaxies |
title | Are HVCs Produced in Galactic Fountains? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Are%20HVCs%20Produced%20in%20Galactic%20Fountains?&rft.jtitle=Astrophysics%20and%20space%20science&rft.au=de%20Avillez,%20Ma&rft.date=2000-07-01&rft.volume=272&rft.issue=1-3&rft.spage=23&rft.epage=30&rft.pages=23-30&rft.issn=0004-640X&rft.eissn=1572-946X&rft_id=info:doi/10.1023/A:1002616817343&rft_dat=%3Cproquest%3E2139404881%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=750915322&rft_id=info:pmid/&rfr_iscdi=true |