Are HVCs Produced in Galactic Fountains?
Three-dimensional simulations of the disk-halo interaction show the formation of a thick HI and HII gas disk with different scale heights. The thick HI disk prevents the disk gas from expanding freely upwards, unless some highly energetic event such as chimneys occurs, whereas the thick HII disk act...
Gespeichert in:
Veröffentlicht in: | Astrophysics and space science 2000-07, Vol.272 (1-3), p.23-30 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three-dimensional simulations of the disk-halo interaction show the formation of a thick HI and HII gas disk with different scale heights. The thick HI disk prevents the disk gas from expanding freely upwards, unless some highly energetic event such as chimneys occurs, whereas the thick HII disk acts as a disk-halo interaction region from where the hot ionized gas flows freely into the halo. The upflowing gas reaches the maximum height at z 9.3 ± 1 kpc becoming thermally unstable due to radiative losses, and condenses into HI clouds. Because the major fraction of the gas is gravitationally bound to the Galaxy, the cold gas returns to the disk. The descending clouds will have at some height high velocities. In a period of 200 Myr of fountain evolution, some 10 percent of the total number of clouds are HVCs.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0004-640X 1572-946X |
DOI: | 10.1023/A:1002616817343 |