Histidine-rich proteins (filaggrins): Structural and functional heterogeneity during epidermal differentiation

The urea-soluble protein profiles of guinea pig, rat, mouse and human epidermis have been compared by non-equilibrium pH gradient/sodium dodecyl sulphate two-dimensional gel electrophoresis. The histidine-rich proteins (filaggrins) were identified firstly by their characteristic specificity and kine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 1983-11, Vol.170 (3), p.651-673
Hauptverfasser: Harding, Clive R., Scott, Ian R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The urea-soluble protein profiles of guinea pig, rat, mouse and human epidermis have been compared by non-equilibrium pH gradient/sodium dodecyl sulphate two-dimensional gel electrophoresis. The histidine-rich proteins (filaggrins) were identified firstly by their characteristic specificity and kinetics of labelling with [ 3H]histidine and [ 32P]phosphate, and secondly by their ability in vitro to aggregate keratin filaments specifically into bundles. In all species the phosphorylated filaggrin precursor, profilaggrin, is resolved as a single or doublet band with an apparent molecular weight greater than 300,000 and a neutral or slightly acidic iso-electric point. In striking contrast, the strongly basic flaggrins produced from similar profilaggrins form molecular weight families that are clearly species specific. In rat and man there is a single, principal molecular weight form of filaggrin ( M r 45,000 and 38,000, respectively), while mouse and guinea pig have heterogeneous families, including high molecular weight variants ( M r > 200,000). Even filaggrins of a particular molecular weight are not homogeneous proteins, but consist of a number of iso-electric variants, some of which are considerably less basic than the bulk of the filaggrins. Incorporation studies using [ 3H]arginine and [ 32P]phosphate indicate that the iso-electric variance is not due to residual phosphate, following profiaggrin breakdown, but rather to a conversion of basic arginine residues into neutral citrulline residues. Filaggrins of all the molecular weights from all the species studied share the ability to aggregate kertin filaments into large, insoluble macrofibrils. However, the more acidic iso-electric variants have lower affinities for keratin, particularly in man and guinea pig where the most acidic filaggrins have completely lost the ability to aggregate keratins. We discuss the possibility that a loss of keratin binding ability, resulting in a loosening of the keratin fibre/filaggrin matrix is necessary before the normal complete proteolysis of the filaggrins can occur.
ISSN:0022-2836
1089-8638
DOI:10.1016/S0022-2836(83)80126-0