Protein discharge from immature secretory granules displays both regulated and constitutive characteristics

At physiological glucose concentrations, isolated pancreatic islets release a minor portion of their newly synthesized insulin and precursors in a phase of secretion which is largely complete by 4 h of chase. Discharge during this period can be amplified by secretagogues, yet is not abolished by con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1991-08, Vol.266 (22), p.14171-14174
Hauptverfasser: ARVAN, P, KULIAWAT, R, PRABAKARAN, D, ZAVACKI, A.-M, ELAHI, D, WANG, S, PILKEY, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:At physiological glucose concentrations, isolated pancreatic islets release a minor portion of their newly synthesized insulin and precursors in a phase of secretion which is largely complete by 4 h of chase. Discharge during this period can be amplified by secretagogues, yet is not abolished by conditions which fully suppress regulated release from dense core secretory granules. The ability to stimulate the secretion and the biochemical profile of released proinsulin-related peptides indicate that secretion during this period originates from immature granules. The stoichiometry of release of labeled C-peptide:insulin during this phase is 1:1 at high glucose concentrations. However, at physiologic or low concentrations, C-peptide is released in molar excess of insulin as if the exocytotic vesicles carrying this secretion were budding from a post-Golgi compartment in which the lumen was composed of condensing insulin and soluble C-peptide. These findings can be explained by a model for regulated secretory protein traffic in which direct exocytosis of young granules is stimulated by higher glucose concentrations and vesicle budding from immature granules occurs at lower concentrations. Thus, insulin targeting from immature granules exhibits both regulated and constitutive-like characteristics.
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(18)98661-8