Potassium Ion Channels Operated by Receptor Stimulation Can be Activated Simply by Raising Temperature
Application of either dopamine (DA), acetylcholine (ACh), or histamine (HA) to the identified ganglion cells of Aplysia elicits a K(+)-dependent slow hyperpolarization. When temperature of the bathing solution was raised from 22 to 32 degrees C, these cells were also hyperpolarized with a marked inc...
Gespeichert in:
Veröffentlicht in: | Japanese journal of physiology 1991, Vol.41(1), pp.117-127 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Application of either dopamine (DA), acetylcholine (ACh), or histamine (HA) to the identified ganglion cells of Aplysia elicits a K(+)-dependent slow hyperpolarization. When temperature of the bathing solution was raised from 22 to 32 degrees C, these cells were also hyperpolarized with a marked increase in K+ conductance. The warm- and transmitter-induced current responses recorded under voltage clamp were not blocked by either 1 mM Ba2+ or 10 mM TEA. Intracellularly injected guanosine 5'-O-(2-thiodiphosphate) (GDP beta S) depressed both warm- and transmitter-induced K+ responses immediately after the injection. Intracellular application of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) caused a gradual, irreversible increase in K+ conductance of the plasma membrane and occluded both responses. Transmitter-induced response markedly decreased when the temperature was raised from 22 to 32 degrees C, suggesting that the response to transmitter was occluded during the warm-induced response. These results suggested that the G-protein regulating the receptor-operated K+ channels could be activated simply by raising temperature. |
---|---|
ISSN: | 0021-521X 1881-1396 |
DOI: | 10.2170/jjphysiol.41.117 |