Induction of DNA polymerase activities in the regenerating rat liver

The levels of DNA polymerase alpha, DNA polymerase delta, and its accessory protein, proliferating cell nuclear antigen (PCNA) were examined in the regenerating rat liver. The levels of DNA polymerase alpha and delta activities in regenerating liver extracts were determined by the use of the DNA pol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1991-07, Vol.30 (30), p.7534-7541
Hauptverfasser: Yang, Chun Li, Zhang, Shan Jian, Toomey, N. Lan, Palmer, T. Norman, Lee, Marietta Y. W. T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The levels of DNA polymerase alpha, DNA polymerase delta, and its accessory protein, proliferating cell nuclear antigen (PCNA) were examined in the regenerating rat liver. The levels of DNA polymerase alpha and delta activities in regenerating liver extracts were determined by the use of the DNA polymerase alpha specific inhibitor, BuAdATP [2-(p-n-butylanilino)-9-(2-deoxy-beta-D-ribofuranosyl) adenine 5'-triphosphate], and monoclonal antibodies. These reagents showed that the total DNA polymerase activities increased ca. 4-fold during regeneration and that the fraction of DNA polymerase delta activity at the peak was 40% of the total DNA polymerase activity. Immunoblots and inhibition studies using specific antibodies showed that DNA polymerase delta and epsilon and PCNA were concomitantly induced after partial hepatectomy. The levels of both DNA polymerase delta and epsilon and PCNA reached their maxima at 24-36 h post hepatectomy, i.e., at the same time that in vivo DNA synthesis reached its peak. Partial purification and characterization of DNA polymerases delta and epsilon from the regenerating rat liver were also performed. These observations suggest that the variation of DNA polymerase delta and epsilon and PCNA during liver regeneration is closely related to DNA synthesis and is consistent with their involvement in DNA replication.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00244a024