A polymer carrier system for taste masking of macrolide antibiotics

A polymer carrier system was developed to reduce the bitterness of erythromycin and its 6-O-methyl derivative, clarithromycin, by absorption to Carbopol. The mechanism involves ionic bonding of the amine macrolide to the high molecular weight polyacrylic acid, thereby removing the drug from the solu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutical research 1991-06, Vol.8 (6), p.706-712
Hauptverfasser: MOU-YING FU LU, BORODKIN, S, WOODWARD, L, PING LI, DIESNER, C, HERNANDEZ, L, VADNERE, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A polymer carrier system was developed to reduce the bitterness of erythromycin and its 6-O-methyl derivative, clarithromycin, by absorption to Carbopol. The mechanism involves ionic bonding of the amine macrolide to the high molecular weight polyacrylic acid, thereby removing the drug from the solution phase in an ion-free suspension. After ingestion, endogenous cations displace the drug from the polymer in the gastrointestinal tract to achieve bioavailability. The macrolide-Carbopol complexes were prepared by dissolving or slurrying predetermined ratios of drug and polymer in water or hydroalcoholic mixtures. A series of in vitro equilibrium studies, taste screening, and bioavailability studies in dogs established the characteristics for the various drug-polymer ratios. Taste protection was further improved by encapsulating the adsorbate particles with polymer coatings. Hydroxypropyl methylcellulose phthalate (HP-55) provided the best combination of suspension stability, taste protection and bioavailability. Human bioavailability studies demonstrated that the microencapsulated Carbopol absorbates of erythromycin and clarithromycin gave blood levels comparable to those obtained from conventional solid formulations.
ISSN:0724-8741
1573-904X
DOI:10.1023/A:1015889631314