A novel HLA-B27 allele maps B27 allospecificity to the region around position 70 in the alpha 1 domain
There are six known HLA-B alleles that share the HLA-B27 allospecificity, yet differ by one to six amino acid substitutions. Each of these B27 alleles can be readily assigned by one of the six representative IEF patterns. Two unrelated individuals, LH and HS, express B27 Ag that appear to be identic...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 1991-07, Vol.147 (1), p.174-180 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There are six known HLA-B alleles that share the HLA-B27 allospecificity, yet differ by one to six amino acid substitutions. Each of these B27 alleles can be readily assigned by one of the six representative IEF patterns. Two unrelated individuals, LH and HS, express B27 Ag that appear to be identical by IEF, but an HLA-B27 alloreactive CTL clone I-73 was found to react differently with these cells, suggesting these B27 molecules are not identical. We sequenced polymerase chain reaction-amplified B27 cDNA clones obtained from HS and compared its deduced amino acid sequence (B27-HS) with the B27 sequence of LH (B27-LH) which was previously designated the B*2701 allele. B27-HS and B27-LH differ by eight amino acids; three in alpha 1 domain and five in alpha 2 domain. These amino acid substitutions of B27-HS altered T cell recognition but not the B27 serologic epitope or IEF pattern. B27-HS differs from the six known B27 alleles by five to eight amino acid substitutions, and thus it represents the seventh allele of the HLA-B27 Ag family. This novel B27 allele might have been derived from a gene conversion event. Previously, two amino acid residues at positions 70 and 97 were suggested to be specific for B27 Ag family. B27-HS now reveals that Lys at position 70 is specific for B27 but Asn at position 97 is not. We propose that the region around position 70 might be crucial in determining the B27 serologic epitope and possibly in peptide Ag binding. This study also demonstrates that class I molecules of the same Ag specificity sharing an indistinguishable IEF pattern are not necessarily identical, and indicates that only the definitive determination of primary structure would identify all the class I alleles that are functionally relevant in regard to alloreactivity, T cell restriction, and disease association. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.147.1.174 |