Postsynaptic dopamine/adenosine interaction: II. Postsynaptic dopamine agonism and adenosine antagonism of methylxanthines in short-term reserpinized mice
Caffeine and its first-stage metabolites (paraxanthine, theophylline and theobromine) caused a significant potentiation of the locomotor activity induced by bromocriptine, 5 mg/kg, in mice pretreated with reserpine, 5 mg/kg (4h prior to the start of motor activity recordings). None of these substanc...
Gespeichert in:
Veröffentlicht in: | European journal of pharmacology 1991-01, Vol.192 (1), p.31-37 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Caffeine and its first-stage metabolites (paraxanthine, theophylline and theobromine) caused a significant potentiation of the locomotor activity induced by bromocriptine, 5 mg/kg, in mice pretreated with reserpine, 5 mg/kg (4h prior to the start of motor activity recordings). None of these substances significantly enhanced locomotor activity in reserpinized mice when administered alone. The rank order of potency was caffeine > paraxanthine > theophylline > theobromine. A high dose of a D-2 antagonist (sulpiride 100 mg/kg) caused a marked inhibition of the locomotor activity induced by bromocriptine, 5 mg/kg, plus 25 mg/kg of caffeine, paraxanthine or theophylline. However, a high dose of a D-1 antagonist (SCH-23390 1 mg/kg) caused a significant decrease of the locomotor activity induced by bromocriptine 5 mg/kg, plus 25 mg/kg of caffeine or paraxanthine, but did not change the locomotor activity caused by bromocriptine, 5 mg/kg, plus theophylline 25 mg/kg. The inhibitory effect of 5′-(N-ethyl)carboxamido-adenosine (NECA), 0.025 mg/kg, on bromocriptine-induced locomotor activation in reserpinized mice was reversed by the simultaneous administration of 10, 25 and 50 mg/kg of caffiene, paraxanthine or theophylline. The rank order of potency for reversal was theophylline > paraxanthine = caffeine. We suggest that methylxanthines act postsynaptically by potentiating the effects of D-2 stimulation and that this potentiation can be produced by D-1 agonism (paraxanthine or caffeine) and by adenosine antagonism (theophylline, paraxanthine or caffeine), most probably involving A-2 receptors. |
---|---|
ISSN: | 0014-2999 1879-0712 |
DOI: | 10.1016/0014-2999(91)90065-X |