Postsynaptic dopamine/adenosine interaction: II. Postsynaptic dopamine agonism and adenosine antagonism of methylxanthines in short-term reserpinized mice

Caffeine and its first-stage metabolites (paraxanthine, theophylline and theobromine) caused a significant potentiation of the locomotor activity induced by bromocriptine, 5 mg/kg, in mice pretreated with reserpine, 5 mg/kg (4h prior to the start of motor activity recordings). None of these substanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmacology 1991-01, Vol.192 (1), p.31-37
Hauptverfasser: Ferré, Sergi, Herrera-Marschitz, Mario, Grabowska-Andén, Maria, Casas, Miquel, Ungerstedt, Urban, Andén, Nils-Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Caffeine and its first-stage metabolites (paraxanthine, theophylline and theobromine) caused a significant potentiation of the locomotor activity induced by bromocriptine, 5 mg/kg, in mice pretreated with reserpine, 5 mg/kg (4h prior to the start of motor activity recordings). None of these substances significantly enhanced locomotor activity in reserpinized mice when administered alone. The rank order of potency was caffeine > paraxanthine > theophylline > theobromine. A high dose of a D-2 antagonist (sulpiride 100 mg/kg) caused a marked inhibition of the locomotor activity induced by bromocriptine, 5 mg/kg, plus 25 mg/kg of caffeine, paraxanthine or theophylline. However, a high dose of a D-1 antagonist (SCH-23390 1 mg/kg) caused a significant decrease of the locomotor activity induced by bromocriptine 5 mg/kg, plus 25 mg/kg of caffeine or paraxanthine, but did not change the locomotor activity caused by bromocriptine, 5 mg/kg, plus theophylline 25 mg/kg. The inhibitory effect of 5′-(N-ethyl)carboxamido-adenosine (NECA), 0.025 mg/kg, on bromocriptine-induced locomotor activation in reserpinized mice was reversed by the simultaneous administration of 10, 25 and 50 mg/kg of caffiene, paraxanthine or theophylline. The rank order of potency for reversal was theophylline > paraxanthine = caffeine. We suggest that methylxanthines act postsynaptically by potentiating the effects of D-2 stimulation and that this potentiation can be produced by D-1 agonism (paraxanthine or caffeine) and by adenosine antagonism (theophylline, paraxanthine or caffeine), most probably involving A-2 receptors.
ISSN:0014-2999
1879-0712
DOI:10.1016/0014-2999(91)90065-X