Changes in pH associated with clotting of fibrinogen. Kinetic studies of the pH shift and correlation of the pH change with the release of fibrinopeptides and the ensuing polymerization
The effect of the initial pH and the concentrations of thrombin, fibrinogen, and Ca2+ upon the rate of pH change associated with clotting of bovine fibrinogen by human thrombin was investigated at pH 6.80, 7.80, and 8.80, 0.3 ionic strength, 25 degrees C, and 19.5 mg/mL final fibrinogen concentratio...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 1991-05, Vol.30 (19), p.4753-4762 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of the initial pH and the concentrations of thrombin, fibrinogen, and Ca2+ upon the rate of pH change associated with clotting of bovine fibrinogen by human thrombin was investigated at pH 6.80, 7.80, and 8.80, 0.3 ionic strength, 25 degrees C, and 19.5 mg/mL final fibrinogen concentration. At pH 6.80 and 7.80, the reaction was first order, with rate constant k1. At pH 8.80, a first-order reaction of the release of H+ (k1) was followed by a partial rebinding of these in a reaction consecutive to the first one (k2). At each of the above pH values, k1 was proportional to thrombin concentration in the 0.05-3.0 min-1 range investigated. The k1 constants were 0.111 +/- 0.001, 0.250 +/- 0.005, and 0.190 +/- 0.002 min-1 (NIH thrombin units)-1 mL-1 at pH 6.80, 7.80, and 8.80, respectively. Plots of log rate vs log thrombin concentration of these data were linear with slopes close to 1 at all three pH values. The rate of the second reaction (k2) was independent of both the thrombin and the initial fibrinogen concentration. The pH dependence of k1 exhibited a bell-shaped curve that could be resolved into the effect of one group with a pK of 7.27 that increased the rate and another with a pK of 9.22 that decreased the rate. With constant thrombin concentration but varying fibrinogen concentration, plots of 1/k1 vs [fibrinogen] were linear, but the lines did not pass through the origin. From the slope and intercept, kcat and KM of the Michaelis-Menten equation could be calculated. The same parameters were obtained also from initial velocity vs [fibrinogen] plots. Values of kcat were consistent and accurate; those of KM were more scattered. KM was (22.4-34.2) X 10(-6) M at pH 6.80 and approximately 7 X 10(-6) M in the pH 7.26-8.80 range. The latter value, pertaining to the release of H+ ions, is in agreement with values in the literature for KM of the release of fibrinopeptide A by thrombin in the 7.4-8.0 pH range. The value of kcat s-1 (unit of thrombin)-1 mL-1 increases from 1.2 X 10(-10) s-1 unit of thrombin-1 mL-1 at pH 6.80 to 2.46 X 10(-10) at pH 7.80 and then decreases to 2.01 X 10(-10) 10(-1) (units of thrombin)-1 mL-1 at pH 8.80. The kcat values are significantly lower than those in the literature for the release of fibrinopeptide A. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi00233a017 |