Suppressors of a U4 snRNA mutation define a novel U6 snRNP protein with RNA-binding motifs

U4 and U6 small nuclear RNAs are associated by an extensive base-pairing interaction that must be disrupted and reformed with each round of splicing. U4 mutations within the U4/U6 interaction domain destabilize the complex in vitro and cause a cold-sensitive phenotype in vivo. Restabilization of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes & development 1991-05, Vol.5 (5), p.773-785
Hauptverfasser: SHANNON, K. W, GUTHRIE, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:U4 and U6 small nuclear RNAs are associated by an extensive base-pairing interaction that must be disrupted and reformed with each round of splicing. U4 mutations within the U4/U6 interaction domain destabilize the complex in vitro and cause a cold-sensitive phenotype in vivo. Restabilization of the U4/U6 helix by dominant (gain-of-function), compensatory mutations in U6 results in wild-type growth. Cold-insensitive growth can also be restored by two classes of recessive (loss-of-function) suppressors: (1) mutations in PRP24, which we show to be a U6-specific binding protein of the RNP-consensus family; and (2) mutations in U6, which lie outside the interaction domain and identify putative PRP24-binding sites. Destabilization of the U4/U6 helix causes the accumulation of a PRP24/U4/U6 complex, which is undetectable in wild-type cells. The loss-of-function suppressor mutations inhibit the binding of PRP24 to U6, and thus presumably promote the release of PRP24 from the PRP24/U4/U6 complex and the reformation of the base-paired U4/U6 snRNP. We propose that the PRP24/U4/U6 complex is normally a highly transient intermediate in the spliceosome cycle and that PRP24 promotes the reannealing of U6 with U4.
ISSN:0890-9369
1549-5477
DOI:10.1101/gad.5.5.773