Isolation of impermeable inside-out vesicles from an enriched sarcolemma fraction of rat heart

Sarcolemmal vesicles isolated from relaxed rat cardiac ventricles were 120-fold enriched in (Na+ + K+)-ATPase and 5'-nucleotidase activities (final recoveries, 50%). The alpha and beta chains of the former enzyme were visualized by the immunological approach. Inside-out sarcolemmal vesicles wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1983-05, Vol.258 (10), p.6628-6635
Hauptverfasser: Mansier, P, Charlemagne, D, Rossi, B, Preteseille, M, Swynghedauw, B, Lelievre, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sarcolemmal vesicles isolated from relaxed rat cardiac ventricles were 120-fold enriched in (Na+ + K+)-ATPase and 5'-nucleotidase activities (final recoveries, 50%). The alpha and beta chains of the former enzyme were visualized by the immunological approach. Inside-out sarcolemmal vesicles were isolated by affinity chromatography on immobilized concanavalin A. The yield of membranes was 0.45 mg of protein/g of muscle. The orientation of the unbound vesicles was studied by the increased accessibility of sarcolemma outer face markers (ouabain- and K+-binding sites, 5'-nucleotidase, and sialic acids) with permeability-increasing treatments: freeze-thaw cycles, sodium dodecyl sulfate, methanol, and valinomycin. The total ATP hydrolysis remained constant with a conversion of ouabain-insensitive activity into an ouabain-sensitive one. These agents caused a parallel increase in the ouabain sensitivity, the number of [3H]ouabain-binding sites, the monovalent cation stimulation of ATPase, and the 5'-nucleotidase activity. Valinomycin revealed that most vesicles were sealed to sequestered and exogenous K+. Inside-out vesicles were 80% pure in sidedness and sealing. The affinity chromatography did not affect the (Na+ + K+)-ATPase activity (200 mumol of product/mg of protein/h). This model of sarcolemma vesicles offers a new tool for ion transport studies.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)32459-1