Noncooperative receptor interactions of glucagon and eleven analogs: inhibition of adenylate cyclase

Glucagon and 11 glucagon derivatives were characterized and compared with respect to the cooperativity of their receptor interactions and their ability to elicit a biphasic (activation-inhibition) response from the adenylate cyclase system of rat liver plasma membranes. Slope factors were evaluated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1983-03, Vol.22 (7), p.1722-1728
Hauptverfasser: England, Richard D, Jenkins, W. Terry, Flanders, Kathleen Corey, Gurd, Ruth S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glucagon and 11 glucagon derivatives were characterized and compared with respect to the cooperativity of their receptor interactions and their ability to elicit a biphasic (activation-inhibition) response from the adenylate cyclase system of rat liver plasma membranes. Slope factors were evaluated from two sets of experimental data, binding to hepatocyte receptors and activation of adenylate cyclase. The results are consistent with noncooperative binding to a single affinity state of the glucagon receptor for all derivatives, irrespective of the modification and the agonist properties of the derivatives. High-dose inhibition of adenylate cyclase activity was observed for native glucagon and all of the derivatives which were examined at high concentrations (greater than 10(-5) M). Partial agonism of some low-affinity glucagon derivatives is not caused by high-dose inhibition. Several mechanisms which might give rise to high-dose inhibition such as receptor cross-linking or multivalent receptor binding are discussed in relationship to the glucagon-receptor interaction. These phenomena indicate that significant differences exist between the glucagon system and the beta-adrenergic system.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00276a031