Hepatic lipase hydrolysis of lipid monolayers. Regulation by apolipoproteins

A monolayer technique was used to study the substrate specificity of hepatic lipase (HL) and the effect of surface pressure and apolipoproteins on hydrolysis of lipid monolayers by this enzyme. HL hydrolyzed readily phosphatidylethanolamine monolayers. Pure trioctanoylglycerol was found to be a poor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1991-03, Vol.266 (8), p.4853-4861
Hauptverfasser: Thuren, T, Wilcox, R W, Sisson, P, Waite, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A monolayer technique was used to study the substrate specificity of hepatic lipase (HL) and the effect of surface pressure and apolipoproteins on hydrolysis of lipid monolayers by this enzyme. HL hydrolyzed readily phosphatidylethanolamine monolayers. Pure trioctanoylglycerol was found to be a poor substrate but when progressively diluted with nonhydrolyzable 1,2-didodecanoylphosphatidylcholine hydrolysis of triacylglycerol by HL reached maximum at a molar ratio of 1:1 triacylglycerol to phosphatidylcholine. The activation of triacylglycerol hydrolysis was not due to altered penetration of HL. The surface pressure optimum of HL for the hydrolysis of phosphatidylethanolamine monolayers was broad between 12.5 and 25 mN/m. When apolipoprotein E was injected beneath the monolayer of phosphatidylethanolamine prior to enzyme addition, a 3-fold activation of HL was observed at surface pressures equal to or below 15 mN/m. Below surface pressures of 20 mN/m apolipoprotein E did not affect the penetration of HL into the lipid-water interface. Apolipoprotein E slightly activated the hydrolysis of triacylglycerol by HL at 10 mN/m. At a high surface pressure of 25 mN/m all apolipoproteins tested (apolipoproteins A-I, A-II, C-I, C-II, C-III, and E) inhibited the penetration into and HL activity on phosphatidylethanolamine At 18.5 mN/m all apolipoproteins except apolipoprotein E inhibited the hydrolysis of triacylglycerol in the triacylglycerol:phosphatidylcholine mixed film. Based on these results we present a hypothesis that phospholipid present in apolipoprotein E-rich high density lipoprotein-1 and triacylglycerol in intermediate density lipoprotein would be preferred substrates for HL.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)67727-6