Neocarzinostatin-induced hydrogen atom abstraction from C-4' and C-5' of the T residue at a d(GT) step in oligonucleotides: shuttling between deoxyribose attack sites based on isotope selection effects

The thiol-activated neocarzinostatin chromophore cleaves duplex oligonucleotides containing the sequence-TGTTTGA-, producing 3'-phosphoglycolate and 3'-phosphate fragments at T, indicating the involvement of 4'- as well as 5'-chemistry at this residue. Substitution of deuterium f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1991-02, Vol.30 (8), p.2034-2042
Hauptverfasser: Kappen, Lizzy S, Goldberg, Irving H, Frank, Bruce L, Worth, Leroy, Christner, Donna F, Kozarich, John W, Stubbe, JoAnne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The thiol-activated neocarzinostatin chromophore cleaves duplex oligonucleotides containing the sequence-TGTTTGA-, producing 3'-phosphoglycolate and 3'-phosphate fragments at T, indicating the involvement of 4'- as well as 5'-chemistry at this residue. Substitution of deuterium for hydrogen at the C-4' position of the affected T leads to a kinetic isotope effect (kH/kD) of 4.0 on the formation of the glycolate-ended product, whereas deuterium at C-5' of the same T reveals kH/kD of 1.6 in the formation of the phosphate-ended product. The proportion of the products representing 4'- and 5'-chemistry can be shifted on the basis of isotope selection effects. A second product resulting from 4'-chemistry, the abasic site associated with 4'-hydroxylation, has been identified as an alkali-labile site, and as a pyridazine derivative formed after cleavage by hydrazine. A comparable isotope effect on its production (kH/kD = 3.7) relative to that of 3'-phosphoglycolate production is consistent with a common intermediate, a putative 4'-peroxy radical, in their formation. The formation of both products of 4'-chemistry is oxygen-dependent, and the internal partitioning between them (3'-phosphate or 3'-phosphoglycolate) is influenced by thiols. Moreover, the nitroaromatic radiation sensitizer misonidazole can substitute for dioxygen, yielding 3'-phosphoglycolate and alkali-labile 3'-phosphate ends, indicative of 4'-chemistry. In addition to the internal partitioning of 4'-chemistry, thiols also affect the overall extent of cleavage (4' plus 5') and the relative partitioning between both sites of attack (4' or 5').
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00222a005