Influenza A-specific, HLA-A2.1-restricted cytotoxic T lymphocytes from HLA-A2.1 transgenic mice recognize fragments of the M1 protein

Previous studies have indicated that in transgenic mice expressing human class I MHC molecules, it is difficult to demonstrate a significant CTL response to a viral Ag in the context of the transgenic molecule. In this paper, a procedure is reported for the isolation of influenza-specific murine CTL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 1991-02, Vol.146 (4), p.1226-1232
Hauptverfasser: Engelhard, VH, Lacy, E, Ridge, JP
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous studies have indicated that in transgenic mice expressing human class I MHC molecules, it is difficult to demonstrate a significant CTL response to a viral Ag in the context of the transgenic molecule. In this paper, a procedure is reported for the isolation of influenza-specific murine CTL restricted by the human class I molecule HLA-A2.1. The principal specificity of such CTL is for a fragment of the influenza M1 protein that has been previously shown to be immunodominant for human HLA-A2.1-restricted CTL. CTL of this specificity were also established through the use of peptide-pulsed rather than virus-infected stimulators. The dependence of murine CTL recognition upon peptide length and HLA-A2 structure was established to be similar to that previously reported for human CTL. However, the fine specificity of CTL maintained on virus-infected stimulators was somewhat different from that of CTL maintained with M1 peptide. This suggests that differences in surface density or peptide structure between peptide-pulsed and virus-infected stimulators may result in the outgrowth of T cells with different receptor structures. The immunodominance of the M1 peptide determinant in both mice and humans suggests that species-specific differences in TCR structure, Ag-processing systems, and self-tolerance are of less importance than limitations on the ability of antigenic peptides to bind to appropriate class I molecules. These results thus establish the utility of the transgenic system for the identification of human class I MHC-restricted T cell epitopes.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.146.4.1226