Earth analogs for Martian life. Microbes in evaporites, a new model system for life on Mars
The prospect of life on Mars today is daunting. Especially problematic for a potential life form is the lack of water, particularly in a liquid state; extremely cold temperatures; ultraviolet and ionizing radiation; and soil oxidants. Yet, “oases” where life might persist have been suggested to occu...
Gespeichert in:
Veröffentlicht in: | Icarus (New York, N.Y. 1962) N.Y. 1962), 1990-11, Vol.88 (1), p.246-260 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The prospect of life on Mars today is daunting. Especially problematic for a potential life form is the lack of water, particularly in a liquid state; extremely cold temperatures; ultraviolet and ionizing radiation; and soil oxidants. Yet, “oases” where life might persist have been suggested to occur in rocks (in analogy with endolithic microorganisms described from deserts around the world), in polar ice caps (in analogy with snow and ice algae) and in possible volcanic regions (in analogy with chemoautotrophs living in deep sea hydrothermal vents); all are critically examined. Microorganisms are known to be able to survive in salt crystals, and recently it has been shown that organisms can metabolize while encrusted in evaporites. Because evaporites are thought to occur on Mars and can attenuate light in the UV range while being far more transparent to radiation useful for photosynthesis (400–700 nm), and because of the properties of these “endoevaporitic” organisms, I propose that such communities provide a new model system for studying potential life on Mars. On the basis of this model, I suggest possibilities for site selection for future exobiological experiments on Mars. |
---|---|
ISSN: | 0019-1035 1090-2643 |
DOI: | 10.1016/0019-1035(90)90188-F |