Evolution of the human α-amylase multigene family through unequal, homologous, and inter- and intrachromosomal crossovers

Human amylase haplotypes differ from each other by different numbers of a long direct repeat unit of approximately 100 kb, encompassing two complete salivary amylase genes and one amylase pseudogene lacking the first three exons. The two salivary genes are part of a 75-kb-long inverted repeat. Two s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genomics (San Diego, Calif.) Calif.), 1990-09, Vol.8 (1), p.97-105
Hauptverfasser: Groot, Peter C., Mager, Willem H., Henriquez, Niek V., Pronk, Jan C., Arwert, Fré, Planta, Rudi J., Eriksson, Aldur W., Frants, Rune R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human amylase haplotypes differ from each other by different numbers of a long direct repeat unit of approximately 100 kb, encompassing two complete salivary amylase genes and one amylase pseudogene lacking the first three exons. The two salivary genes are part of a 75-kb-long inverted repeat. Two short sequences, hybridizing with a probe containing exons 1–3, were found in the central part of the inverted repeat. Sequencing showed that these fragments, designated r, contain exon 3 sequences. We present evidence that these r-fragments and the pseudogene most likely are remnants of the same ancestral pancreatic gene. We determined the orientation of the exon 3 sequences present in the r-fragment and show that an inversion can explain their origination. Hybridization studies, using random fragments from the intergenic region of the AMY gene cluster as probes, enabled us to detect more extended homologous regions in this cluster than were found previously on the basis of restriction maps only. Together, these results allow us to present a model for the evolution of the human amylase multigene family by a number of consecutive events involving inter- and intrachromosomal crossovers.
ISSN:0888-7543
1089-8646
DOI:10.1016/0888-7543(90)90230-R