The effects of graded exercise on plasma proenkephalin peptide F and catecholamine responses at sea level
The purpose of this study was to evaluate the effects of graded treadmill exercise on plasma preproenkephalin peptide F immunoreactivity and concomitant catecholamine responses at sea level (elevation, 50 m). Few data exist regarding the sea-level responses of plasma peptide F immunoreactivity to ex...
Gespeichert in:
Veröffentlicht in: | European Journal of Applied Physiology and Occupational Physiology 1990-10, Vol.61 (3-4), p.214-217 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this study was to evaluate the effects of graded treadmill exercise on plasma preproenkephalin peptide F immunoreactivity and concomitant catecholamine responses at sea level (elevation, 50 m). Few data exist regarding the sea-level responses of plasma peptide F immunoreactivity to exercise. thirty-five healthy men performed a graded exercise test on a motor-driven treadmill at the relative exercise intensities of 25, 50, 75, and 100% of maximum oxygen consumption (VO2max). Significant (P less than 0.05) increases above rest were observed for plasma peptide F immunoreactivity and norepinephrine at 75 and 100% of the VO2 max and at 5 min into recovery. Significant increases in plasma epinephrine were observed at 75 and 100% of VO2max. Whole blood lactate significantly increased above resting values at 50, 75, and 100% of the VO2max and at 5 min into recovery. These data demonstrate that exercise stress increases plasma peptide F immunoreactivity levels at sea level. While the exercise response patterns of peptide F immunoreactivity are similar to catecholamines and blood lactate responses, no bivariate relationships were observed. These data show that sea-level response patterns to graded exercise are similar to those previously observed at moderate altitude (elevation, 2200 m). |
---|---|
ISSN: | 0301-5548 1439-6319 1432-1025 1439-6327 |
DOI: | 10.1007/bf00357602 |