Expression of sodium-linked nucleoside transport activity in monolayer cultures of IEC-6 intestinal epithelial cells

Mature, confluent monolayer cultures of IEC-6 rat intestinal epithelial cells in conventional growth media express both Na(+)-linked, concentrative nucleoside transport (NT) activity and equilibrative, inhibitor-sensitive NT activity, but do not show morphologic differentiation. Na(+)-dependent flux...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1990-12, Vol.265 (36), p.22210-22216
Hauptverfasser: Jakobs, E S, Van Os-Corby, D J, Paterson, A R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mature, confluent monolayer cultures of IEC-6 rat intestinal epithelial cells in conventional growth media express both Na(+)-linked, concentrative nucleoside transport (NT) activity and equilibrative, inhibitor-sensitive NT activity, but do not show morphologic differentiation. Na(+)-dependent fluxes of Ado and formycin B were minor in early subconfluent IEC-6 monolayers, but increased severalfold to become the major component of influx of these agents in confluent monolayers grown in medium containing Nu-Serum, a commercial medium supplement with a low serum content. In monolayers cultured in medium with fetal bovine serum, cell proliferation rates were similar to those in medium supplemented with Nu-Serum, but expression of Na(+)-linked NT activity was 6-8-fold lower than in monolayers grown in the latter medium. Inclusion of hydrocortisone in growth medium with Nu-Serum caused a 2-fold increase in the expression of Na(+)-linked NT activity. Experiments in which components of medium supplementation were withheld showed that insulin and epidermal growth factor were important in expression of the Na(+)-linked NT activity. Because the Na(+)-linked NT system has a brush border location in fresh intestinal epithelium, it is concluded that the regulated expression of this activity in the IEC-6 monolayers is a differentiative change.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)45691-8