Cytosolic calcium and protein kinase C reduce complement-mediated glomerular epithelial injury
Cytosolic calcium and protein kinase C reduce complement-mediated glomerular epithelial injury. In rat membranous nephropathy, proteinuria is due to formation of the C5b-9 membrane attack complex of complement (C), and is associated with morphological evidence of glomerular epithelial cell (GEC) inj...
Gespeichert in:
Veröffentlicht in: | Kidney international 1990-11, Vol.38 (5), p.803-811 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cytosolic calcium and protein kinase C reduce complement-mediated glomerular epithelial injury. In rat membranous nephropathy, proteinuria is due to formation of the C5b-9 membrane attack complex of complement (C), and is associated with morphological evidence of glomerular epithelial cell (GEC) injury. Analogous morphological changes are induced by C5b-9 in cultured GEC. In addition, in cultured GEC C5b-9 induces Ca2+ influx, as well as Ca2+ mobilization and increased 1,2-diacylglycerol due to the activation of phospholipase C. In this study we investigated how this GEC activation pattern might influence C-mecliated GEC injury. We demonstrate that the C5b-9-induced increase in cytosolic Ca2+ concentration ([Ca2+]i) did not impair ATP generation by mitochondria, suggesting that it does not contribute to cytotoxicity. Moreover, this increase in [Ca2+]i protected GEC from C-mediated cytolysis. However, a large increase in [Ca2+]i (produced by the Ca2+ ionophore A23187) impaired ATP generation and aggravated C-mediated cytotoxicity, suggesting that intact mitochondrial activity is necessary for GEC to withstand C attack. Activation of protein kinase C (PKC) by phorbol myristate acetate (PMA) also decreased C-mediated cytolysis. Conversely, C lysis was enhanced in GEC that had been pretreated for 18 hours with a high dose of PMA to deplete PKC, and following PKC inhibition with H-7. Therefore, PKC activation, possibly resulting from C5b-9-induced increase in 1,2-diacylglycerol, triggered mechanisms that protected GEC from C-mediated injury. Thus, as a consequence of C5b-9-induced phospholipase activation, the amount of C-induced GEC injury is diminished. |
---|---|
ISSN: | 0085-2538 1523-1755 |
DOI: | 10.1038/ki.1990.274 |