Cell death and interocular interactions among retinofugal axons: lack of binocularly matched specificity
Naturally occurring ganglion cell death has been attributed to competitive interactions among axons at their targets during development of the retinofugal pathways. The present study is concerned with the hypothesis that interocular interactions leading to ganglion cell death are restricted to binoc...
Gespeichert in:
Veröffentlicht in: | Brain research. Developmental brain research 1990-11, Vol.56 (2), p.198-204 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Naturally occurring ganglion cell death has been attributed to competitive interactions among axons at their targets during development of the retinofugal pathways. The present study is concerned with the hypothesis that interocular interactions leading to ganglion cell death are restricted to binocularly conjugate terminals in the optic nuclei. We tested this hypothesis in newborn rats by making localized retinal lesions, which denervate a restricted portion of the contralateral optic targets. When these rats reached adulthood, the ipsilaterally projecting ganglion cells of the intact eye were then studied following retrograde labeling with horseradish peroxidase. Results were compared with those from a normal, control group and from rats that had one eye removed on the day of birth. In those retinal loci binocularly conjugate to the lesions in the opposite eye, no localized cell rescue could be found among the ipsilaterally projecting ganglion cells. The same retinal loci, however, showed clear cell rescue after contralateral enucleation. Independent, anterograde, studies of the ipsilateral retino-collicular projection verified that lesions of equivalent size to those used in the retrograde study reliably create aberrant expanded uncrossed terminal fields. The present data suggest that the interocular interactions involved in the diminished ganglion cell loss which follows monocular enucleation are not dependent on topographically specific binocular matching. The phenomena of naturally occurring cell loss and of retinotopically specific interocular interactions may therefore be independent during normal development. |
---|---|
ISSN: | 0165-3806 |
DOI: | 10.1016/0165-3806(90)90082-A |