Investigation of proton conductance in liver mitochondria of broilers with pulmonary hypertension syndrome

We previously reported an impaired ability to regulate hepatic mitochondrial state 4 respiration rate in response to sequential additions of adenosine diphosphate in pulmonary hypertension syndrome (PHS). As proton conductance is a major contributor to State 4 respiration, the major goal of this stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Poultry science 2004-02, Vol.83 (2), p.259-265
Hauptverfasser: Cawthon, D, Iqbal, M, Brand, J, McNew, R, Bottje, W.G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We previously reported an impaired ability to regulate hepatic mitochondrial state 4 respiration rate in response to sequential additions of adenosine diphosphate in pulmonary hypertension syndrome (PHS). As proton conductance is a major contributor to State 4 respiration, the major goal of this study was to investigate the nature of proton conductance in hepatic mitochondria isolated from broilers with and without PHS. Broilers were placed on floor litter in environmental chambers and exposed to cold temperatures (15°C) from 3 to 7 wk of age to induce PHS. Liver mitochondria were isolated from birds that exhibited PHS (cyanosis, right ventricular weight ratio > 0.30) or from birds that appeared healthy (no cyanosis, right ventricular weight ratio < 0.27). Isolated mitochondria were placed in a chamber equipped with the ability to measure oxygen content and mitochondrial membrane potential. The mitochondrial membrane potential was assessed by an ion sensitive electrode to measure the distribution of methyltriphenylphosphonium across the inner mitochondrial membrane. Proton conductance was assessed by simultaneously measuring State 4 oxygen consumption rate as respiration was progressively inhibited with increasing concentrations of malonate. The addition of cardiolipin, a lipid found in high concentrations in mitochondrial membranes that can alter proton conductance, had no affect on respiration or mitochondrial membrane potential in either group. The relationship of curves depicting State 4 respiration and mitochondrial membrane potential indicates that PHS mitochondria exhibit impaired substrate oxidation and reduced proton conductance relative to controls. These findings provide further characterization of the altered cellular oxygen utilization in broilers with PHS.
ISSN:0032-5791
1525-3171
DOI:10.1093/ps/83.2.259