Cloning and biochemical characterization of a novel mouse ADP-dependent glucokinase

Glycolysis, the catabolism of glucose to pyruvate, is an iconic central metabolic pathway and often used as a paradigm for explaining the general principles of the regulation/control of cellular metabolism. The ubiquitous mammalian ATP-dependent hexokinases I–III and hexokinase IV, also termed gluco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2004-03, Vol.315 (3), p.652-658
Hauptverfasser: Ronimus, Ron S, Morgan, Hugh W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glycolysis, the catabolism of glucose to pyruvate, is an iconic central metabolic pathway and often used as a paradigm for explaining the general principles of the regulation/control of cellular metabolism. The ubiquitous mammalian ATP-dependent hexokinases I–III and hexokinase IV, also termed glucokinase, initiate the process by phosphorylating glucose to glucose-6-phosphate. Despite glycolysis having been studied extensively for over 70 years and the last new mammalian ATP-dependent hexokinase isotype having been described in the 1960s, we report here the biochemical characterization of a recombinant ADP-dependent glucokinase cloned from a full-length Mus musculus cDNA, identified by sequence analysis. The recombinant enzyme is quite specific for glucose, is monomeric, has an apparent K m for glucose and ADP of 96 and 280 μM, respectively, and is inhibited by both high concentrations of glucose and AMP. The metabolic role of this enzyme in cells would be dependent on the relative level of its activity to those of the ATP-dependent hexokinases. The greatest advantage of an ADP-GK would clearly be during ischemia/hypoxia, clinically relevant conditions in multiple major disease states, by decreasing the priming cost for the phosphorylation of glucose, saving ATP.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2004.01.103