Sphingolipid-Cholesterol Domains (Lipid Rafts) in Normal Human and Dog Thyroid Follicular Cells Are Not Involved in Thyrotropin Receptor Signaling

Partition of signaling molecules in sphingolipid-cholesterol-enriched membrane domains, among which are the caveolae, may contribute to signal transduction efficiency. In normal thyroid, nothing is known about a putative TSH/cAMP cascade compartmentation in caveolae or other sphingolipid-cholesterol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrinology (Philadelphia) 2004-03, Vol.145 (3), p.1464-1472
Hauptverfasser: Costa, M. J, Song, Y, Macours, P, Massart, C, Many, M. C, Costagliola, S, Dumont, J. E, Van Sande, J, Vanvooren, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Partition of signaling molecules in sphingolipid-cholesterol-enriched membrane domains, among which are the caveolae, may contribute to signal transduction efficiency. In normal thyroid, nothing is known about a putative TSH/cAMP cascade compartmentation in caveolae or other sphingolipid-cholesterol-enriched membrane domains. In this study we show for the first time that caveolae are present in the apical membrane of dog and human thyrocytes: caveolin-1 mRNA presence is demonstrated by Northern blotting in primary cultures and that of the caveolin-1 protein by immunohistochemistry performed on human thyroid tissue. The TSH receptor located in the basal membrane can therefore not be located in caveolae. We demonstrate for the first time by biochemical methods the existence of sphingolipid-cholesterol-enriched domains in human and dog thyroid follicular cells that contain caveolin, flotillin-2, and the insulin receptor. We assessed a possible sphingolipid-cholesterol-enriched domains compartmentation of the TSH receptor and the α- subunit of the heterotrimeric Gs and Gq proteins using two approaches: Western blotting on detergent-resistant membranes isolated from thyrocytes in primary cultures and the influence of 10 mm methyl-β-cyclodextrin, a cholesterol chelator, on basal and stimulated cAMP accumulation in intact thyrocytes. The results from both types of experiments strongly suggest that the TSH/cAMP cascade in thyroid cells is not associated with sphingolipid-cholesterol-enriched membrane domains.
ISSN:0013-7227
1945-7170
DOI:10.1210/en.2003-1432