Computer-Aided Detection Schemes: The Effect of Limiting the Number of Cued Regions in Each Case

We assessed performance changes of a mammographic computer-aided detection scheme when we restricted the maximum number of regions that could be identified (cued) as showing positive findings in each case. A computer-aided detection scheme was applied to 500 cases (or 2,000 images), including 300 ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of roentgenology (1976) 2004-03, Vol.182 (3), p.579-583
Hauptverfasser: Zheng, Bin, Leader, Joseph K, Abrams, Gordon, Shindel, Betty, Catullo, Victor, Good, Walter F, Gur, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We assessed performance changes of a mammographic computer-aided detection scheme when we restricted the maximum number of regions that could be identified (cued) as showing positive findings in each case. A computer-aided detection scheme was applied to 500 cases (or 2,000 images), including 300 cases in which mammograms showed verified malignant masses. We evaluated the overall case-based performance of the scheme using a free-response receiver operating characteristic approach, and we measured detection sensitivity at a fixed false-positive detection rate of 0.4 per image after gradually reducing the maximum number of cued regions allowed for each case from seven to one. The original computer-aided detection scheme achieved a maximum case-based sensitivity of 97% at 3.3 false-positive detected regions per image. For a detection decision score set at 0.565, the scheme had a 79% (237/300) case-based sensitivity, with 0.4 false-positive detected regions per image. After limiting the number of maximum allowed cued regions per case, the false-positive rates decreased faster than the true-positive rates. At a maximum of two cued regions per case, the false-positive rate decreased from 0.4 to 0.21 per image, whereas detection sensitivity decreased from 237 to 220 masses. To maintain sensitivity at 79%, we reduced the detection decision score to as low as 0.36, which resulted in a reduction of false-positive detected regions from 0.4 to 0.3 per image and a reduction in region-based sensitivity from 66.1% to 61.4%. Limiting the maximum number of cued regions per case can improve the overall case-based performance of computer-aided detection schemes in mammography.
ISSN:0361-803X
1546-3141
DOI:10.2214/ajr.182.3.1820579