Synthesis and Chemical−Pharmacological Characterization of the Antimetastatic NAMI-A-Type Ru(III) Complexes (Hdmtp)[trans-RuCl4(dmso-S)(dmtp)], (Na)[trans-RuCl4(dmso-S)(dmtp)], and [mer-RuCl3(H2O)(dmso-S)(dmtp)] (dmtp = 5,7-Dimethyl[1,2,4]triazolo[1,5-a]pyrimidine)
Ruthenium compounds have gained large interest for their potential application as chemotherapeutic agents, and in particular the complexes of the type (X)[trans-RuCl4(dmso-S)L] (X = HL or Na, NAMI-A or NAMI, respectively, for L = imidazole) are under investigation for their antimetastatic properties...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2004-02, Vol.47 (5), p.1110-1121 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ruthenium compounds have gained large interest for their potential application as chemotherapeutic agents, and in particular the complexes of the type (X)[trans-RuCl4(dmso-S)L] (X = HL or Na, NAMI-A or NAMI, respectively, for L = imidazole) are under investigation for their antimetastatic properties. The NAMI(-A)-like compounds are prodrugs that hydrolyze in vivo, and the investigation of their hydrolytic properties is therefore important for determining the nature of the potential active species. The NAMI-A-type Ru(III) complex 1, (Hdmtp)[trans-RuCl4(dmso-S)(dmtp)] (dmtp is 5,7-dimethyl[1,2,4]triazolo[1,5-a]pyrimidine), and the corresponding sodium analogue 2, (Na)[trans-RuCl4(dmso-S)(dmtp)], were synthesized. The hydrolyses of 1 and 2 in water as well as in buffered solutions were studied, and the first hydrolysis product, [mer-RuCl3(H2O)(dmso-S)(dmtp)]·H2O (3), was isolated and characterized. The molecular structures of 1 and 3 were determined by single-crystal X-ray diffraction analyses and prove the importance of the hydrogen-bonding properties of dmtp to stabilize hydrolysis products. In vitro 1 (a) is not cytotoxic on tumor cells, following challenges from 1 to 72 h and concentrations up to 100 μM, (b) inhibits matrigel invasion at 0.1 mM and MMP-9 activity with an IC50 of about 1 mM, and (c) is devoid of pronounced effects on cell distribution among cell cycle phases. In vivo compound 1, similar to NAMI-A, significantly inhibits metastasis growth in mice bearing advanced MCa mammary carcinoma tumors. In the lungs, 1 is significantly less concentrated than NAMI-A, whereas no differences between these two compounds were found in other organs such as tumor, liver, and kidney. However, 1 caused edema and necrotic areas on liver parenchyma that are more pronounced than those caused by NAMI-A. Conversely, glomerular and tubular changes on kidney are less extensive than with NAMI-A. In conclusion, 1 confirms the excellent antimetastatic properties of this class of NAMI-A-type compounds and qualifies as an interesting alternative to NAMI-A for treating human cancers. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/jm030984d |