Antisense oligonucleotides bound in the polysaccharide complex and the enhanced antisense effect due to the low hydrolysis

Schizophyllan is a β-(1→3)- d-glucan and can form a novel complex with some single-chains of DNAs. As the preceding paper revealed, the polynucleotide bound in the complex is more stable to nuclease-mediated hydrolysis than the polynucleotide itself (i.e., naked polynucleotide). This paper examined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2004-07, Vol.25 (15), p.3117-3123
Hauptverfasser: Mizu, Masami, Koumoto, Kazuya, Anada, Takahisa, Sakurai, Kazuo, Shinkai, Seiji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Schizophyllan is a β-(1→3)- d-glucan and can form a novel complex with some single-chains of DNAs. As the preceding paper revealed, the polynucleotide bound in the complex is more stable to nuclease-mediated hydrolysis than the polynucleotide itself (i.e., naked polynucleotide). This paper examined possibility to apply this complex to an antisense DNA carrier, using an in vitro (cell-free) transcription/translation assay. In this assay, we used a plasmid DNA coding a green fluorescence protein (GFP) and an antisense DNA designed to hybridize the ribosome-binding site in the GFP-coded mRNA. When the antisense DNA was administered as the complex, a lower GFP expression efficiency (or higher antisense effect) is observed over naked DNA. This is because the antisense DNA in the complex is protected from the attack of deoxyribonuclease. When exonuclease I, which specifically hydrolyzes single DNA chains, was present in the GEP assay system, the antisense effect was not changed for the complex while being weakened in the naked antisense DNA system. These results imply that the exonuclease I cannot hydrolyze the antisense DNA in the complex, while it can hydrolyze naked DNA to reduce its antisense effect.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2003.11.008