Model to describe the degree of twitch potentiation during neuromuscular monitoring

Neuromuscular block is estimated by comparing the evoked peak twitch with a control value measured in the absence of neuromuscular block. In practice, this control value is often difficult to determine because repeated motor nerve stimulation enhances the evoked mechanical response of the correspond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of anaesthesia : BJA 2004-03, Vol.92 (3), p.373-380
Hauptverfasser: Eleveld, D.J., Kopman, A.F., Proost, J.H., Wierda, J.M.K.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue 3
container_start_page 373
container_title British journal of anaesthesia : BJA
container_volume 92
creator Eleveld, D.J.
Kopman, A.F.
Proost, J.H.
Wierda, J.M.K.H.
description Neuromuscular block is estimated by comparing the evoked peak twitch with a control value measured in the absence of neuromuscular block. In practice, this control value is often difficult to determine because repeated motor nerve stimulation enhances the evoked mechanical response of the corresponding muscle, resulting in an increased twitch response. This is known as twitch potentiation or the staircase phenomenon. It is probably the result of myosin light chain phosphorylation creating an increased twitch force for a given amount of Ca2+ released at each action potential. Modelling of potentiation may improve studies of neuromuscular blocking agents using mechanomyography or accelerometry. We used one- and two-exponential models to describe the degree of myosin light chain phosphorylation and associated twitch potentiation. These models were fitted to accelerographic twitch force measurements for various stimulation patterns and frequencies used in neuromuscular monitoring. Fitting a two-exponential model to twitch data for various stimulation rates and patterns provides better prediction than a one-exponential model. A one-exponential model performs poorly when the stimulation rate varies during measurement. We conclude that a two-exponential model can predict the degree of twitch potentiation for the stimulation patterns and frequencies tested more accurately than a one-exponential model. However, if only one stimulation frequency is used, a one-exponential model can provide good accuracy. We illustrate that such a potentiation model can improve the ability of pharmacodynamic-pharmacokinetic neuromuscular block models to predict twitch response in the presence of a neuromuscular blocking agent.
doi_str_mv 10.1093/bja/aeh056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80164058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bja/aeh056</oup_id><els_id>S0007091217361524</els_id><sourcerecordid>588074991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-959f4f0e4c8010508309e13e5373c0916c3ab1c5adac6c483827d9d464596e723</originalsourceid><addsrcrecordid>eNp90cuKFDEUBuAgitOObnwACYIuhHKSSlKpLKW9jDDiQkXpTUgnp6bTVlXaXLy8vRmqsUHEVQj5zoU_CD2k5Dklil1s9-bCwI6I7hZaUS5p00lJb6MVIUQ2RNH2DN1LaU8Ila0Sd9FZRbxlXKzQh3fBwYhzwA6SjX4LOO-gXq4jAA4Dzj98tjt8CBnm7E32YcauRD9f4xlKDFNJtowm4inMPoebh_vozmDGBA-O5zn69PrVx_Vlc_X-zdv1i6vG8l7lRgk18IEAtz2hRJCeEQWUgWCS2bp1Z5nZUiuMM7arJaxvpVOOd1yoDmTLztHTpe8hhm8FUtaTTxbG0cwQStK1bceJ6Ct8_BfchxLnupumSvaCcSIrerYgG0NKEQZ9iH4y8ZemRN_krGvOesm54kfHjmU7gTvRY7AVPDkCk6wZh2hm69PJCUEp6_nJhXL4_8BmcT5l-PlHmvhVd5JJoS-_bPRGbujLz5LodfV88VA_4LuHqJP1MFtwPoLN2gX_rzG_AWyNs3E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197853407</pqid></control><display><type>article</type><title>Model to describe the degree of twitch potentiation during neuromuscular monitoring</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Eleveld, D.J. ; Kopman, A.F. ; Proost, J.H. ; Wierda, J.M.K.H.</creator><creatorcontrib>Eleveld, D.J. ; Kopman, A.F. ; Proost, J.H. ; Wierda, J.M.K.H.</creatorcontrib><description>Neuromuscular block is estimated by comparing the evoked peak twitch with a control value measured in the absence of neuromuscular block. In practice, this control value is often difficult to determine because repeated motor nerve stimulation enhances the evoked mechanical response of the corresponding muscle, resulting in an increased twitch response. This is known as twitch potentiation or the staircase phenomenon. It is probably the result of myosin light chain phosphorylation creating an increased twitch force for a given amount of Ca2+ released at each action potential. Modelling of potentiation may improve studies of neuromuscular blocking agents using mechanomyography or accelerometry. We used one- and two-exponential models to describe the degree of myosin light chain phosphorylation and associated twitch potentiation. These models were fitted to accelerographic twitch force measurements for various stimulation patterns and frequencies used in neuromuscular monitoring. Fitting a two-exponential model to twitch data for various stimulation rates and patterns provides better prediction than a one-exponential model. A one-exponential model performs poorly when the stimulation rate varies during measurement. We conclude that a two-exponential model can predict the degree of twitch potentiation for the stimulation patterns and frequencies tested more accurately than a one-exponential model. However, if only one stimulation frequency is used, a one-exponential model can provide good accuracy. We illustrate that such a potentiation model can improve the ability of pharmacodynamic-pharmacokinetic neuromuscular block models to predict twitch response in the presence of a neuromuscular blocking agent.</description><identifier>ISSN: 0007-0912</identifier><identifier>EISSN: 1471-6771</identifier><identifier>DOI: 10.1093/bja/aeh056</identifier><identifier>PMID: 14742345</identifier><identifier>CODEN: BJANAD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Anesthesia ; Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Biological and medical sciences ; contractility ; Electric Stimulation ; Evoked Potentials, Motor - drug effects ; Evoked Potentials, Motor - physiology ; Humans ; Medical sciences ; Models, Biological ; monitoring ; Monitoring, Intraoperative - methods ; monitoring, neuromuscular function ; muscle ; muscle, contractility ; muscle, skeletal ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - physiology ; Myosin Light Chains - metabolism ; Neuromuscular Blockade ; Neuromuscular Blocking Agents - pharmacology ; neuromuscular function ; Neuromuscular Junction - drug effects ; Neuromuscular Junction - physiology ; pharmacodynamics ; pharmacodynamics, models ; Phosphorylation - drug effects ; skeletal</subject><ispartof>British journal of anaesthesia : BJA, 2004-03, Vol.92 (3), p.373-380</ispartof><rights>2004 British Journal of Anaesthesia</rights><rights>The Board of Management and Trustees of the British Journal of Anaesthesia 2004</rights><rights>2004 INIST-CNRS</rights><rights>Copyright British Medical Association Mar 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-959f4f0e4c8010508309e13e5373c0916c3ab1c5adac6c483827d9d464596e723</citedby><cites>FETCH-LOGICAL-c489t-959f4f0e4c8010508309e13e5373c0916c3ab1c5adac6c483827d9d464596e723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15511384$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14742345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eleveld, D.J.</creatorcontrib><creatorcontrib>Kopman, A.F.</creatorcontrib><creatorcontrib>Proost, J.H.</creatorcontrib><creatorcontrib>Wierda, J.M.K.H.</creatorcontrib><title>Model to describe the degree of twitch potentiation during neuromuscular monitoring</title><title>British journal of anaesthesia : BJA</title><addtitle>Br. J. Anaesth</addtitle><addtitle>Br. J. Anaesth</addtitle><description>Neuromuscular block is estimated by comparing the evoked peak twitch with a control value measured in the absence of neuromuscular block. In practice, this control value is often difficult to determine because repeated motor nerve stimulation enhances the evoked mechanical response of the corresponding muscle, resulting in an increased twitch response. This is known as twitch potentiation or the staircase phenomenon. It is probably the result of myosin light chain phosphorylation creating an increased twitch force for a given amount of Ca2+ released at each action potential. Modelling of potentiation may improve studies of neuromuscular blocking agents using mechanomyography or accelerometry. We used one- and two-exponential models to describe the degree of myosin light chain phosphorylation and associated twitch potentiation. These models were fitted to accelerographic twitch force measurements for various stimulation patterns and frequencies used in neuromuscular monitoring. Fitting a two-exponential model to twitch data for various stimulation rates and patterns provides better prediction than a one-exponential model. A one-exponential model performs poorly when the stimulation rate varies during measurement. We conclude that a two-exponential model can predict the degree of twitch potentiation for the stimulation patterns and frequencies tested more accurately than a one-exponential model. However, if only one stimulation frequency is used, a one-exponential model can provide good accuracy. We illustrate that such a potentiation model can improve the ability of pharmacodynamic-pharmacokinetic neuromuscular block models to predict twitch response in the presence of a neuromuscular blocking agent.</description><subject>Anesthesia</subject><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Biological and medical sciences</subject><subject>contractility</subject><subject>Electric Stimulation</subject><subject>Evoked Potentials, Motor - drug effects</subject><subject>Evoked Potentials, Motor - physiology</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Models, Biological</subject><subject>monitoring</subject><subject>Monitoring, Intraoperative - methods</subject><subject>monitoring, neuromuscular function</subject><subject>muscle</subject><subject>muscle, contractility</subject><subject>muscle, skeletal</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - physiology</subject><subject>Myosin Light Chains - metabolism</subject><subject>Neuromuscular Blockade</subject><subject>Neuromuscular Blocking Agents - pharmacology</subject><subject>neuromuscular function</subject><subject>Neuromuscular Junction - drug effects</subject><subject>Neuromuscular Junction - physiology</subject><subject>pharmacodynamics</subject><subject>pharmacodynamics, models</subject><subject>Phosphorylation - drug effects</subject><subject>skeletal</subject><issn>0007-0912</issn><issn>1471-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90cuKFDEUBuAgitOObnwACYIuhHKSSlKpLKW9jDDiQkXpTUgnp6bTVlXaXLy8vRmqsUHEVQj5zoU_CD2k5Dklil1s9-bCwI6I7hZaUS5p00lJb6MVIUQ2RNH2DN1LaU8Ila0Sd9FZRbxlXKzQh3fBwYhzwA6SjX4LOO-gXq4jAA4Dzj98tjt8CBnm7E32YcauRD9f4xlKDFNJtowm4inMPoebh_vozmDGBA-O5zn69PrVx_Vlc_X-zdv1i6vG8l7lRgk18IEAtz2hRJCeEQWUgWCS2bp1Z5nZUiuMM7arJaxvpVOOd1yoDmTLztHTpe8hhm8FUtaTTxbG0cwQStK1bceJ6Ct8_BfchxLnupumSvaCcSIrerYgG0NKEQZ9iH4y8ZemRN_krGvOesm54kfHjmU7gTvRY7AVPDkCk6wZh2hm69PJCUEp6_nJhXL4_8BmcT5l-PlHmvhVd5JJoS-_bPRGbujLz5LodfV88VA_4LuHqJP1MFtwPoLN2gX_rzG_AWyNs3E</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Eleveld, D.J.</creator><creator>Kopman, A.F.</creator><creator>Proost, J.H.</creator><creator>Wierda, J.M.K.H.</creator><general>Elsevier Ltd</general><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>6I.</scope><scope>AAFTH</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20040301</creationdate><title>Model to describe the degree of twitch potentiation during neuromuscular monitoring</title><author>Eleveld, D.J. ; Kopman, A.F. ; Proost, J.H. ; Wierda, J.M.K.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-959f4f0e4c8010508309e13e5373c0916c3ab1c5adac6c483827d9d464596e723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Anesthesia</topic><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Biological and medical sciences</topic><topic>contractility</topic><topic>Electric Stimulation</topic><topic>Evoked Potentials, Motor - drug effects</topic><topic>Evoked Potentials, Motor - physiology</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Models, Biological</topic><topic>monitoring</topic><topic>Monitoring, Intraoperative - methods</topic><topic>monitoring, neuromuscular function</topic><topic>muscle</topic><topic>muscle, contractility</topic><topic>muscle, skeletal</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - physiology</topic><topic>Myosin Light Chains - metabolism</topic><topic>Neuromuscular Blockade</topic><topic>Neuromuscular Blocking Agents - pharmacology</topic><topic>neuromuscular function</topic><topic>Neuromuscular Junction - drug effects</topic><topic>Neuromuscular Junction - physiology</topic><topic>pharmacodynamics</topic><topic>pharmacodynamics, models</topic><topic>Phosphorylation - drug effects</topic><topic>skeletal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eleveld, D.J.</creatorcontrib><creatorcontrib>Kopman, A.F.</creatorcontrib><creatorcontrib>Proost, J.H.</creatorcontrib><creatorcontrib>Wierda, J.M.K.H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of anaesthesia : BJA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eleveld, D.J.</au><au>Kopman, A.F.</au><au>Proost, J.H.</au><au>Wierda, J.M.K.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model to describe the degree of twitch potentiation during neuromuscular monitoring</atitle><jtitle>British journal of anaesthesia : BJA</jtitle><stitle>Br. J. Anaesth</stitle><addtitle>Br. J. Anaesth</addtitle><date>2004-03-01</date><risdate>2004</risdate><volume>92</volume><issue>3</issue><spage>373</spage><epage>380</epage><pages>373-380</pages><issn>0007-0912</issn><eissn>1471-6771</eissn><coden>BJANAD</coden><abstract>Neuromuscular block is estimated by comparing the evoked peak twitch with a control value measured in the absence of neuromuscular block. In practice, this control value is often difficult to determine because repeated motor nerve stimulation enhances the evoked mechanical response of the corresponding muscle, resulting in an increased twitch response. This is known as twitch potentiation or the staircase phenomenon. It is probably the result of myosin light chain phosphorylation creating an increased twitch force for a given amount of Ca2+ released at each action potential. Modelling of potentiation may improve studies of neuromuscular blocking agents using mechanomyography or accelerometry. We used one- and two-exponential models to describe the degree of myosin light chain phosphorylation and associated twitch potentiation. These models were fitted to accelerographic twitch force measurements for various stimulation patterns and frequencies used in neuromuscular monitoring. Fitting a two-exponential model to twitch data for various stimulation rates and patterns provides better prediction than a one-exponential model. A one-exponential model performs poorly when the stimulation rate varies during measurement. We conclude that a two-exponential model can predict the degree of twitch potentiation for the stimulation patterns and frequencies tested more accurately than a one-exponential model. However, if only one stimulation frequency is used, a one-exponential model can provide good accuracy. We illustrate that such a potentiation model can improve the ability of pharmacodynamic-pharmacokinetic neuromuscular block models to predict twitch response in the presence of a neuromuscular blocking agent.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>14742345</pmid><doi>10.1093/bja/aeh056</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-0912
ispartof British journal of anaesthesia : BJA, 2004-03, Vol.92 (3), p.373-380
issn 0007-0912
1471-6771
language eng
recordid cdi_proquest_miscellaneous_80164058
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Anesthesia
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Biological and medical sciences
contractility
Electric Stimulation
Evoked Potentials, Motor - drug effects
Evoked Potentials, Motor - physiology
Humans
Medical sciences
Models, Biological
monitoring
Monitoring, Intraoperative - methods
monitoring, neuromuscular function
muscle
muscle, contractility
muscle, skeletal
Muscle, Skeletal - drug effects
Muscle, Skeletal - physiology
Myosin Light Chains - metabolism
Neuromuscular Blockade
Neuromuscular Blocking Agents - pharmacology
neuromuscular function
Neuromuscular Junction - drug effects
Neuromuscular Junction - physiology
pharmacodynamics
pharmacodynamics, models
Phosphorylation - drug effects
skeletal
title Model to describe the degree of twitch potentiation during neuromuscular monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20to%20describe%20the%20degree%20of%20twitch%20potentiation%20during%20neuromuscular%20monitoring&rft.jtitle=British%20journal%20of%20anaesthesia%20:%20BJA&rft.au=Eleveld,%20D.J.&rft.date=2004-03-01&rft.volume=92&rft.issue=3&rft.spage=373&rft.epage=380&rft.pages=373-380&rft.issn=0007-0912&rft.eissn=1471-6771&rft.coden=BJANAD&rft_id=info:doi/10.1093/bja/aeh056&rft_dat=%3Cproquest_cross%3E588074991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197853407&rft_id=info:pmid/14742345&rft_oup_id=10.1093/bja/aeh056&rft_els_id=S0007091217361524&rfr_iscdi=true