Model to describe the degree of twitch potentiation during neuromuscular monitoring
Neuromuscular block is estimated by comparing the evoked peak twitch with a control value measured in the absence of neuromuscular block. In practice, this control value is often difficult to determine because repeated motor nerve stimulation enhances the evoked mechanical response of the correspond...
Gespeichert in:
Veröffentlicht in: | British journal of anaesthesia : BJA 2004-03, Vol.92 (3), p.373-380 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 380 |
---|---|
container_issue | 3 |
container_start_page | 373 |
container_title | British journal of anaesthesia : BJA |
container_volume | 92 |
creator | Eleveld, D.J. Kopman, A.F. Proost, J.H. Wierda, J.M.K.H. |
description | Neuromuscular block is estimated by comparing the evoked peak twitch with a control value measured in the absence of neuromuscular block. In practice, this control value is often difficult to determine because repeated motor nerve stimulation enhances the evoked mechanical response of the corresponding muscle, resulting in an increased twitch response. This is known as twitch potentiation or the staircase phenomenon. It is probably the result of myosin light chain phosphorylation creating an increased twitch force for a given amount of Ca2+ released at each action potential. Modelling of potentiation may improve studies of neuromuscular blocking agents using mechanomyography or accelerometry.
We used one- and two-exponential models to describe the degree of myosin light chain phosphorylation and associated twitch potentiation. These models were fitted to accelerographic twitch force measurements for various stimulation patterns and frequencies used in neuromuscular monitoring.
Fitting a two-exponential model to twitch data for various stimulation rates and patterns provides better prediction than a one-exponential model. A one-exponential model performs poorly when the stimulation rate varies during measurement.
We conclude that a two-exponential model can predict the degree of twitch potentiation for the stimulation patterns and frequencies tested more accurately than a one-exponential model. However, if only one stimulation frequency is used, a one-exponential model can provide good accuracy. We illustrate that such a potentiation model can improve the ability of pharmacodynamic-pharmacokinetic neuromuscular block models to predict twitch response in the presence of a neuromuscular blocking agent. |
doi_str_mv | 10.1093/bja/aeh056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80164058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bja/aeh056</oup_id><els_id>S0007091217361524</els_id><sourcerecordid>588074991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-959f4f0e4c8010508309e13e5373c0916c3ab1c5adac6c483827d9d464596e723</originalsourceid><addsrcrecordid>eNp90cuKFDEUBuAgitOObnwACYIuhHKSSlKpLKW9jDDiQkXpTUgnp6bTVlXaXLy8vRmqsUHEVQj5zoU_CD2k5Dklil1s9-bCwI6I7hZaUS5p00lJb6MVIUQ2RNH2DN1LaU8Ila0Sd9FZRbxlXKzQh3fBwYhzwA6SjX4LOO-gXq4jAA4Dzj98tjt8CBnm7E32YcauRD9f4xlKDFNJtowm4inMPoebh_vozmDGBA-O5zn69PrVx_Vlc_X-zdv1i6vG8l7lRgk18IEAtz2hRJCeEQWUgWCS2bp1Z5nZUiuMM7arJaxvpVOOd1yoDmTLztHTpe8hhm8FUtaTTxbG0cwQStK1bceJ6Ct8_BfchxLnupumSvaCcSIrerYgG0NKEQZ9iH4y8ZemRN_krGvOesm54kfHjmU7gTvRY7AVPDkCk6wZh2hm69PJCUEp6_nJhXL4_8BmcT5l-PlHmvhVd5JJoS-_bPRGbujLz5LodfV88VA_4LuHqJP1MFtwPoLN2gX_rzG_AWyNs3E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197853407</pqid></control><display><type>article</type><title>Model to describe the degree of twitch potentiation during neuromuscular monitoring</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Eleveld, D.J. ; Kopman, A.F. ; Proost, J.H. ; Wierda, J.M.K.H.</creator><creatorcontrib>Eleveld, D.J. ; Kopman, A.F. ; Proost, J.H. ; Wierda, J.M.K.H.</creatorcontrib><description>Neuromuscular block is estimated by comparing the evoked peak twitch with a control value measured in the absence of neuromuscular block. In practice, this control value is often difficult to determine because repeated motor nerve stimulation enhances the evoked mechanical response of the corresponding muscle, resulting in an increased twitch response. This is known as twitch potentiation or the staircase phenomenon. It is probably the result of myosin light chain phosphorylation creating an increased twitch force for a given amount of Ca2+ released at each action potential. Modelling of potentiation may improve studies of neuromuscular blocking agents using mechanomyography or accelerometry.
We used one- and two-exponential models to describe the degree of myosin light chain phosphorylation and associated twitch potentiation. These models were fitted to accelerographic twitch force measurements for various stimulation patterns and frequencies used in neuromuscular monitoring.
Fitting a two-exponential model to twitch data for various stimulation rates and patterns provides better prediction than a one-exponential model. A one-exponential model performs poorly when the stimulation rate varies during measurement.
We conclude that a two-exponential model can predict the degree of twitch potentiation for the stimulation patterns and frequencies tested more accurately than a one-exponential model. However, if only one stimulation frequency is used, a one-exponential model can provide good accuracy. We illustrate that such a potentiation model can improve the ability of pharmacodynamic-pharmacokinetic neuromuscular block models to predict twitch response in the presence of a neuromuscular blocking agent.</description><identifier>ISSN: 0007-0912</identifier><identifier>EISSN: 1471-6771</identifier><identifier>DOI: 10.1093/bja/aeh056</identifier><identifier>PMID: 14742345</identifier><identifier>CODEN: BJANAD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Anesthesia ; Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Biological and medical sciences ; contractility ; Electric Stimulation ; Evoked Potentials, Motor - drug effects ; Evoked Potentials, Motor - physiology ; Humans ; Medical sciences ; Models, Biological ; monitoring ; Monitoring, Intraoperative - methods ; monitoring, neuromuscular function ; muscle ; muscle, contractility ; muscle, skeletal ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - physiology ; Myosin Light Chains - metabolism ; Neuromuscular Blockade ; Neuromuscular Blocking Agents - pharmacology ; neuromuscular function ; Neuromuscular Junction - drug effects ; Neuromuscular Junction - physiology ; pharmacodynamics ; pharmacodynamics, models ; Phosphorylation - drug effects ; skeletal</subject><ispartof>British journal of anaesthesia : BJA, 2004-03, Vol.92 (3), p.373-380</ispartof><rights>2004 British Journal of Anaesthesia</rights><rights>The Board of Management and Trustees of the British Journal of Anaesthesia 2004</rights><rights>2004 INIST-CNRS</rights><rights>Copyright British Medical Association Mar 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-959f4f0e4c8010508309e13e5373c0916c3ab1c5adac6c483827d9d464596e723</citedby><cites>FETCH-LOGICAL-c489t-959f4f0e4c8010508309e13e5373c0916c3ab1c5adac6c483827d9d464596e723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15511384$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14742345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eleveld, D.J.</creatorcontrib><creatorcontrib>Kopman, A.F.</creatorcontrib><creatorcontrib>Proost, J.H.</creatorcontrib><creatorcontrib>Wierda, J.M.K.H.</creatorcontrib><title>Model to describe the degree of twitch potentiation during neuromuscular monitoring</title><title>British journal of anaesthesia : BJA</title><addtitle>Br. J. Anaesth</addtitle><addtitle>Br. J. Anaesth</addtitle><description>Neuromuscular block is estimated by comparing the evoked peak twitch with a control value measured in the absence of neuromuscular block. In practice, this control value is often difficult to determine because repeated motor nerve stimulation enhances the evoked mechanical response of the corresponding muscle, resulting in an increased twitch response. This is known as twitch potentiation or the staircase phenomenon. It is probably the result of myosin light chain phosphorylation creating an increased twitch force for a given amount of Ca2+ released at each action potential. Modelling of potentiation may improve studies of neuromuscular blocking agents using mechanomyography or accelerometry.
We used one- and two-exponential models to describe the degree of myosin light chain phosphorylation and associated twitch potentiation. These models were fitted to accelerographic twitch force measurements for various stimulation patterns and frequencies used in neuromuscular monitoring.
Fitting a two-exponential model to twitch data for various stimulation rates and patterns provides better prediction than a one-exponential model. A one-exponential model performs poorly when the stimulation rate varies during measurement.
We conclude that a two-exponential model can predict the degree of twitch potentiation for the stimulation patterns and frequencies tested more accurately than a one-exponential model. However, if only one stimulation frequency is used, a one-exponential model can provide good accuracy. We illustrate that such a potentiation model can improve the ability of pharmacodynamic-pharmacokinetic neuromuscular block models to predict twitch response in the presence of a neuromuscular blocking agent.</description><subject>Anesthesia</subject><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Biological and medical sciences</subject><subject>contractility</subject><subject>Electric Stimulation</subject><subject>Evoked Potentials, Motor - drug effects</subject><subject>Evoked Potentials, Motor - physiology</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Models, Biological</subject><subject>monitoring</subject><subject>Monitoring, Intraoperative - methods</subject><subject>monitoring, neuromuscular function</subject><subject>muscle</subject><subject>muscle, contractility</subject><subject>muscle, skeletal</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - physiology</subject><subject>Myosin Light Chains - metabolism</subject><subject>Neuromuscular Blockade</subject><subject>Neuromuscular Blocking Agents - pharmacology</subject><subject>neuromuscular function</subject><subject>Neuromuscular Junction - drug effects</subject><subject>Neuromuscular Junction - physiology</subject><subject>pharmacodynamics</subject><subject>pharmacodynamics, models</subject><subject>Phosphorylation - drug effects</subject><subject>skeletal</subject><issn>0007-0912</issn><issn>1471-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90cuKFDEUBuAgitOObnwACYIuhHKSSlKpLKW9jDDiQkXpTUgnp6bTVlXaXLy8vRmqsUHEVQj5zoU_CD2k5Dklil1s9-bCwI6I7hZaUS5p00lJb6MVIUQ2RNH2DN1LaU8Ila0Sd9FZRbxlXKzQh3fBwYhzwA6SjX4LOO-gXq4jAA4Dzj98tjt8CBnm7E32YcauRD9f4xlKDFNJtowm4inMPoebh_vozmDGBA-O5zn69PrVx_Vlc_X-zdv1i6vG8l7lRgk18IEAtz2hRJCeEQWUgWCS2bp1Z5nZUiuMM7arJaxvpVOOd1yoDmTLztHTpe8hhm8FUtaTTxbG0cwQStK1bceJ6Ct8_BfchxLnupumSvaCcSIrerYgG0NKEQZ9iH4y8ZemRN_krGvOesm54kfHjmU7gTvRY7AVPDkCk6wZh2hm69PJCUEp6_nJhXL4_8BmcT5l-PlHmvhVd5JJoS-_bPRGbujLz5LodfV88VA_4LuHqJP1MFtwPoLN2gX_rzG_AWyNs3E</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Eleveld, D.J.</creator><creator>Kopman, A.F.</creator><creator>Proost, J.H.</creator><creator>Wierda, J.M.K.H.</creator><general>Elsevier Ltd</general><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>6I.</scope><scope>AAFTH</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20040301</creationdate><title>Model to describe the degree of twitch potentiation during neuromuscular monitoring</title><author>Eleveld, D.J. ; Kopman, A.F. ; Proost, J.H. ; Wierda, J.M.K.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-959f4f0e4c8010508309e13e5373c0916c3ab1c5adac6c483827d9d464596e723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Anesthesia</topic><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Biological and medical sciences</topic><topic>contractility</topic><topic>Electric Stimulation</topic><topic>Evoked Potentials, Motor - drug effects</topic><topic>Evoked Potentials, Motor - physiology</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Models, Biological</topic><topic>monitoring</topic><topic>Monitoring, Intraoperative - methods</topic><topic>monitoring, neuromuscular function</topic><topic>muscle</topic><topic>muscle, contractility</topic><topic>muscle, skeletal</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - physiology</topic><topic>Myosin Light Chains - metabolism</topic><topic>Neuromuscular Blockade</topic><topic>Neuromuscular Blocking Agents - pharmacology</topic><topic>neuromuscular function</topic><topic>Neuromuscular Junction - drug effects</topic><topic>Neuromuscular Junction - physiology</topic><topic>pharmacodynamics</topic><topic>pharmacodynamics, models</topic><topic>Phosphorylation - drug effects</topic><topic>skeletal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eleveld, D.J.</creatorcontrib><creatorcontrib>Kopman, A.F.</creatorcontrib><creatorcontrib>Proost, J.H.</creatorcontrib><creatorcontrib>Wierda, J.M.K.H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of anaesthesia : BJA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eleveld, D.J.</au><au>Kopman, A.F.</au><au>Proost, J.H.</au><au>Wierda, J.M.K.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model to describe the degree of twitch potentiation during neuromuscular monitoring</atitle><jtitle>British journal of anaesthesia : BJA</jtitle><stitle>Br. J. Anaesth</stitle><addtitle>Br. J. Anaesth</addtitle><date>2004-03-01</date><risdate>2004</risdate><volume>92</volume><issue>3</issue><spage>373</spage><epage>380</epage><pages>373-380</pages><issn>0007-0912</issn><eissn>1471-6771</eissn><coden>BJANAD</coden><abstract>Neuromuscular block is estimated by comparing the evoked peak twitch with a control value measured in the absence of neuromuscular block. In practice, this control value is often difficult to determine because repeated motor nerve stimulation enhances the evoked mechanical response of the corresponding muscle, resulting in an increased twitch response. This is known as twitch potentiation or the staircase phenomenon. It is probably the result of myosin light chain phosphorylation creating an increased twitch force for a given amount of Ca2+ released at each action potential. Modelling of potentiation may improve studies of neuromuscular blocking agents using mechanomyography or accelerometry.
We used one- and two-exponential models to describe the degree of myosin light chain phosphorylation and associated twitch potentiation. These models were fitted to accelerographic twitch force measurements for various stimulation patterns and frequencies used in neuromuscular monitoring.
Fitting a two-exponential model to twitch data for various stimulation rates and patterns provides better prediction than a one-exponential model. A one-exponential model performs poorly when the stimulation rate varies during measurement.
We conclude that a two-exponential model can predict the degree of twitch potentiation for the stimulation patterns and frequencies tested more accurately than a one-exponential model. However, if only one stimulation frequency is used, a one-exponential model can provide good accuracy. We illustrate that such a potentiation model can improve the ability of pharmacodynamic-pharmacokinetic neuromuscular block models to predict twitch response in the presence of a neuromuscular blocking agent.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>14742345</pmid><doi>10.1093/bja/aeh056</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-0912 |
ispartof | British journal of anaesthesia : BJA, 2004-03, Vol.92 (3), p.373-380 |
issn | 0007-0912 1471-6771 |
language | eng |
recordid | cdi_proquest_miscellaneous_80164058 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Anesthesia Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy Biological and medical sciences contractility Electric Stimulation Evoked Potentials, Motor - drug effects Evoked Potentials, Motor - physiology Humans Medical sciences Models, Biological monitoring Monitoring, Intraoperative - methods monitoring, neuromuscular function muscle muscle, contractility muscle, skeletal Muscle, Skeletal - drug effects Muscle, Skeletal - physiology Myosin Light Chains - metabolism Neuromuscular Blockade Neuromuscular Blocking Agents - pharmacology neuromuscular function Neuromuscular Junction - drug effects Neuromuscular Junction - physiology pharmacodynamics pharmacodynamics, models Phosphorylation - drug effects skeletal |
title | Model to describe the degree of twitch potentiation during neuromuscular monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20to%20describe%20the%20degree%20of%20twitch%20potentiation%20during%20neuromuscular%20monitoring&rft.jtitle=British%20journal%20of%20anaesthesia%20:%20BJA&rft.au=Eleveld,%20D.J.&rft.date=2004-03-01&rft.volume=92&rft.issue=3&rft.spage=373&rft.epage=380&rft.pages=373-380&rft.issn=0007-0912&rft.eissn=1471-6771&rft.coden=BJANAD&rft_id=info:doi/10.1093/bja/aeh056&rft_dat=%3Cproquest_cross%3E588074991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197853407&rft_id=info:pmid/14742345&rft_oup_id=10.1093/bja/aeh056&rft_els_id=S0007091217361524&rfr_iscdi=true |