UV irradiation inhibits ABC transporters via generation of ADP-ribose by concerted action of poly(ADP-ribose) polymerase-1 and glycohydrolase
ATP-binding cassette (ABC) transporters are involved in the transport of multiple substrates across cellular membranes, including metabolites, proteins, and drugs. Employing a functional fluorochrome export assay, we found that UVB irradiation strongly inhibits the activity of ABC transporters. Spec...
Gespeichert in:
Veröffentlicht in: | Cell death and differentiation 2004-03, Vol.11 (3), p.314-320 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ATP-binding cassette (ABC) transporters are involved in the transport of multiple substrates across cellular membranes, including metabolites, proteins, and drugs. Employing a functional fluorochrome export assay, we found that UVB irradiation strongly inhibits the activity of ABC transporters. Specific inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1) restored the function of ABC transporters in UVB-irradiated cells, and PARP-1-deficient cells did not undergo UVB-induced membrane transport inhibition. These data suggest that PARP-1 activation is necessary for ABC transporter functional downregulation. The hydrolysis of poly(ADP-ribose) by poly(ADP-ribose) glycohydrolase (PARG) was also required, since specific PARG inhibitors, which limit the production of ADP-ribose molecules, restored the function of ABC transporters. Furthermore, ADP-ribose molecules potently inhibited the activity of the ABC transporter P-glycoprotein. Hence, poly(ADP-ribose) metabolism appears to play a novel role in the regulation of ABC transporters. |
---|---|
ISSN: | 1350-9047 1476-5403 |
DOI: | 10.1038/sj.cdd.4401348 |